Interested Article - Сопряжённые числа

Геометрическое представление и его сопряжённого на комплексной плоскости

Сопряжённые числа ( комплексно-сопряжённые числа ) — пара комплексных чисел , обладающих одинаковыми действительными частями и равными по абсолютной величине , но противоположными по знаку, мнимыми частями . Например, сопряжёнными являются числа и . Число, сопряжённое к числу , обозначается . В общем случае, сопряжённым к числу (где и действительные числа ) является .

Например:

На комплексной плоскости сопряжённые числа представлены точками, симметричными относительно действительной оси. В полярной системе координат сопряжённые числа имеют вид и , что непосредственно следует из формулы Эйлера .

Сопряжёнными числами являются корни квадратного уравнения с действительными коэффициентами и отрицательным дискриминантом.

Свойства

Для произвольных комплексных чисел и :

  • ,
  • является действительным числом,
  • для всех целых ,
  • ,
  • ,
  • (то есть, сопряжение является инволюцией ),
  • , если не равно нулю. С помощью этого свойства вычисляют обратное комплексного числа заданного в прямоугольных координатах.

Если является голоморфной функцией , сужение которой на множество действительных чисел является действительной функцией, и определены , то:

.

В частности:

  • , если не равно нулю.
  • если полином с действительными коэффициентами и , то также , то есть комплексные (не действительные) таких многочленов всегда образуют комплексно-сопряжённые пары.

Определение координат числа и сопряжения

Прямоугольные и полярные координаты комплексного числа могут быть определены с помощью формул:

  • (если не равно нулю).

Примечания

  1. Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .

Литература

Источник —

Same as Сопряжённые числа