Interested Article - Квадратное уравнение

Квадра́тное уравне́ние алгебраическое уравнение второй степени с общим видом

в котором — неизвестное, а коэффициенты , и вещественные или комплексные числа.

Корень уравнения — это значение неизвестного , обращающее квадратный трёхчлен в ноль, а квадратное уравнение в верное числовое равенство. Также это значение называется корнем самого многочлена

Элементы квадратного уравнения имеют собственные названия :

  • называют первым или старшим коэффициентом,
  • называют вторым , средним коэффициентом или коэффициентом при ,
  • называют свободным членом .

Приведённым называют квадратное уравнение, в котором старший коэффициент равен единице . Такое уравнение может быть получено делением всего выражения на старший коэффициент :

Полным называют такое квадратное уравнение, все коэффициенты которого отличны от нуля.

Неполным называется такое квадратное уравнение, в котором хотя бы один из коэффициентов, кроме старшего (либо второй коэффициент, либо свободный член), равен нулю.

Квадратное уравнение является разрешимым в радикалах , то есть его корни могут быть выражены через коэффициенты в общем виде.

Исторические сведения о квадратных уравнениях

Древний Вавилон

Уже во втором тысячелетии до нашей эры вавилоняне знали, как решать квадратные уравнения . Решение их в Древнем Вавилоне было тесно связано с практическими задачами, в основном такими, как измерение площади земельных участков, земельные работы, связанные с военными нуждами; наличие этих познаний также обусловлено развитием математики и астрономии вообще. Были известны способы решения как полных, так и неполных квадратных уравнений. Приведём примеры квадратных уравнений, решавшихся в Древнем Вавилоне, используя современную алгебраическую запись:

Правила решения квадратных уравнений во многом аналогичны современным, однако в вавилонских текстах не зафиксированы рассуждения, путём которых эти правила были получены.

Индия

Задачи, решаемые с помощью квадратных уравнений, встречаются в трактате по астрономии «Ариабхаттиам», написанном индийским астрономом и математиком Ариабхатой в 499 году нашей эры. Один из первых известных выводов формулы корней квадратного уравнения принадлежит индийскому учёному Брахмагупте (около 598 г.) ; Брахмагупта изложил универсальное правило решения квадратного уравнения, приведённого к каноническому виду: притом предполагалось, что в нём все коэффициенты, кроме могут быть отрицательными. Сформулированное учёным правило по своему существу совпадает с современным.

Корни квадратного уравнения на множестве действительных чисел

I способ. Общая формула для вычисления корней с помощью дискриминанта

Дискриминантом квадратного уравнения называется величина .

Условие
Количество корней Два корня Один корень кратности 2
(другими словами, два равных корня)
Действительных корней нет
Формула
(1)

Следствия:

  • трёхчлен есть полный квадрат суммы или разности в том и только в том случае, если ;
  • Дискриминант можно найти по формуле: ;
  • .

Данный метод универсальный, однако не единственный.

II способ. Корни квадратного уравнения при чётном коэффициенте b

Для уравнений вида , то есть при чётном , где

вместо формулы (1) для нахождения корней существует возможность использования более простых выражений .

Примечание: данные ниже формулы можно получить, подставив в стандартные формулы выражение b = 2 k , через несложные преобразования.

Дискриминант
Корни
неприведённое приведённое D > 0 неприведённое приведённое
удобнее вычислять значение

четверти дискриминанта:

Все необходимые свойства при этом сохраняются.

.
D = 0

III способ. Решение неполных квадратных уравнений

К решению неполных квадратных уравнений практикуется особый подход. Рассматриваются три возможных ситуации.

b = 0 , c = 0
b=0; c≠0
b≠0; c=0
(процесс преобразования специально показан подробно, на практике можно сразу переходить к последнему равенству)
Если , то уравнение имеет два действительных корня (разных по знаку), a если , то уравнение не имеет действительных корней .

или

Такое уравнение обязательно имеет два действительных корня , причём один из них всегда равен нулю.

IV способ. Использование частных соотношений коэффициентов

Существуют частные случаи квадратных уравнений, в которых коэффициенты находятся в соотношениях между собой, позволяющих решать их гораздо проще.

Корни квадратного уравнения, в котором сумма старшего коэффициента и свободного члена равна второму коэффициенту

Если в квадратном уравнении сумма первого коэффициента и свободного члена равна второму коэффициенту: , то его корнями являются и число, противоположное отношению свободного члена к старшему коэффициенту ( ).

Отсюда следует, что перед решением какого-либо квадратного уравнения целесообразна проверка возможности применения к нему этой теоремы: сравнить сумму старшего коэффициента и свободного члена со вторым коэффициентом.

Корни квадратного уравнения, сумма всех коэффициентов которого равна нулю

Если в квадратном уравнении сумма всех его коэффициентов равна нулю ( ), то корнями такого уравнения являются и отношение свободного члена к старшему коэффициенту ( ).

Отсюда следует, что перед решением уравнения стандартными методами целесообразна проверка применимости к нему этой теоремы, а именно сложение всех коэффициентов данного уравнения и установление, не равна ли нулю эта сумма.

V способ. Разложение квадратного трёхчлена на линейные множители

Если трёхчлен вида удастся каким-либо образом представить в качестве произведения линейных множителей , то можно найти корни уравнения — ими будут и , действительно, ведь а решив указанные линейные уравнения, получим вышеописанное. Квадратный трёхчлен не всегда раскладывается на линейные множители с действительными коэффициентами: это возможно, если соответствующее ему уравнение имеет действительные корни.

Рассматриваются некоторые частные случаи.

Использование формулы квадрата суммы (разности)

Если квадратный трёхчлен имеет вид , то применив к нему названную формулу, можно разложить его на линейные множители и, значит, найти корни:

Выделение полного квадрата суммы (разности)

Также названную формулу применяют, пользуясь методом, получившим названия «выделение полного квадрата суммы (разности)». Применительно к приведённому квадратному уравнению с введёнными ранее обозначениями, это означает следующее:

  1. прибавляют и отнимают одно и то же число:
    .
  2. применяют формулу к полученному выражению, переносят вычитаемое и свободный член в правую часть:

  3. извлекают из левой и правой частей уравнения квадратный корень и выражают переменную:

Примечание: данная формула совпадает с предлагаемой в разделе «Корни приведённого квадратного уравнения», которую, в свою очередь, можно получить из общей формулы (1) путём подстановки равенства a = 1 . Этот факт не просто совпадение: описанным методом, произведя, правда, некоторые дополнительные рассуждения, можно вывести и общую формулу, а также доказать свойства дискриминанта.

VI способ. Использование прямой и обратной теоремы Виета

Прямая теорема Виета (см. ) и обратная ей теорема позволяют решать приведённые квадратные уравнения устно, не прибегая к вычислениям по формуле (1).

Согласно обратной теореме, всякая пара чисел (число) , будучи решением системы уравнений

являются корнями уравнения .

Подобрать устно числа, удовлетворяющие этим уравнениям, поможет прямая теорема. С её помощью можно определить знаки корней, не зная сами корни. Для этого следует руководствоваться правилом:

1) если свободный член отрицателен, то корни имеют различный знак, и наибольший по модулю из корней — знак, противоположный знаку второго коэффициента уравнения;
2) если свободный член положителен, то оба корня обладают одинаковым знаком, и это — знак, противоположный знаку второго коэффициента.

VII способ. Метод «переброски»

По своей сущности метод «переброски» является просто модификацией теоремы Виета .

Метод «переброски» — это сведение уравнения, которое нельзя привести так, чтобы все коэффициенты остались целыми, к приведённому уравнению с целыми коэффициентами:

1) умножаем обе части на старший коэффициент:
2) заменяем

Далее решаем уравнение относительно по методу, описанному , и находим .

Графическое решение квадратного уравнения

Графиком квадратичной функции является парабола . Решениями (корнями) квадратного уравнения называют абсциссы точек пересечения параболы с осью абсцисс . Если парабола, описываемая квадратичной функцией, не пересекается с осью абсцисс, уравнение не имеет вещественных корней. Если парабола пересекается с осью абсцисс в одной точке (в вершине параболы), уравнение имеет один вещественный корень (также говорят, что уравнение имеет два совпадающих корня). Если парабола пересекает ось абсцисс в двух точках, уравнение имеет два вещественных корня (см. изображение справа.)

Если коэффициент положительный, ветви параболы направлены вверх и наоборот. Если коэффициент положительный (при положительном , при отрицательном наоборот), то вершина параболы лежит в левой полуплоскости и наоборот.

Графический способ решения квадратных уравнений

Помимо универсального способа, описанного выше, существует так называемый графический способ . В общем виде этот способ решения рационального уравнения вида заключается в следующем: в одной системе координат строят графики функций и и находят абсциссы общих точек этих графиков; найденные числа и будут корнями уравнения.

Есть всего пять основных способов графического решения квадратных уравнений.

Приём I

Для решения квадратного уравнения строится график функции и отыскиваются абсциссы точек пересечения такого графика с осью .

Приём II

Для решения того же уравнения этим приёмом уравнение преобразуют к виду и строят в одной системе координат графики квадратичной функции и линейной функции , затем находят абсциссу точек их пересечения.

Приём III

Данный приём подразумевает преобразование исходного уравнения к виду , используя метод выделения полного квадрата суммы (разности) и затем в . После этого строятся график функции (им является график функции , смещённый на единиц масштаба вправо или влево в зависимости от знака) и прямую , параллельную оси абсцисс. Корнями уравнения будут абсциссы точек пересечения параболы и прямой.

Приём IV

Квадратное уравнение преобразуют к виду , строят график функции (им является график функции , смещённый на единиц масштаба вверх, если этот коэффициент положителен, либо вниз, если он отрицателен), и , находят абсциссы их общих точек.

Приём V

Квадратное уравнение преобразуют к особому виду:

затем

Совершив преобразования, строят графики линейной функции и обратной пропорциональности , отыскивают абсциссы точек пересечения этих графиков. Этот приём имеет границу применимости: если , то приём не используется.

Решение квадратных уравнений с помощью циркуля и линейки

Описанные выше приёмы графического решения имеют существенные недостатки: они достаточно трудоёмки, при этом точность построения кривых — парабол и гипербол — низка. Указанные проблемы не присущи предлагаемому ниже методу, предполагающему относительно более точные построения циркулем и линейкой.

Чтобы произвести такое решение, нужно выполнить нижеследующую последовательность действий.

  1. Построить в системе координат окружность с центром в точке , пересекающую ось в точке .
  2. Далее возможны три случая:
    • длина радиуса окружности превышает длину перпендикуляра к оси абсцисс, опущенного из точки : в этом случае окружность пересекает ось в двух точках, а уравнение имеет два действительных корня, равных абсциссам этих точек;
    • радиус равен перпендикуляру: одна точка и один вещественный корень кратности 2;
    • радиус меньше перпендикуляра: корней в множестве нет.

Корни квадратного уравнения на множестве комплексных чисел

Уравнение с действительными коэффициентами

Квадратное уравнение с вещественными коэффициентами всегда имеет с учётом кратности два комплексных корня , о чём гласит основная теорема алгебры . При этом, в случае неотрицательного дискриминанта корни будут вещественными, а в случае отрицательного — комплексно-сопряжёнными :

  • при уравнение будет иметь два вещественных корня:
  • при — один корень кратности 2 (другими словами, два одинаковых корня):
  • при — два комплексно-сопряжённых корня, выражающихся той же формулой, что и для положительного дискриминанта. Также её можно переписать так, чтобы она не содержала отрицательного подкоренного выражения, следующим образом:

Уравнение с комплексными коэффициентами

В комплексном случае квадратное уравнение решается по той же формуле (1) и указанным выше её вариантам, но различимыми являются только два случая: нулевого дискриминанта (один двукратный корень) и ненулевого (два корня единичной кратности).

Корни приведённого квадратного уравнения

Квадратное уравнение вида в котором старший коэффициент равен единице, называют приведённым . В этом случае формула для корней (1) упрощается до

Мнемонические правила:

«Минус» напишем сначала,
Рядом с ним p пополам,
«Плюс-минус» знак радикала,
С детства знакомого нам.
Ну, а под корнем, приятель,
Сводится всё к пустяку:
p пополам и в квадрате
Минус прекрасное q .

p , со знаком взяв обратным,
На два мы его разделим,
И от корня аккуратно
Знаком «минус-плюс» отделим.
А под корнем очень кстати
Половина p в квадрате
Минус q — и вот решенья,
То есть корни уравненья.

Чтобы x найти к половине p ,
Взятой с минусом не забудь,
Радикал приставь с плюсом минусом,
Аккуратно, не как-нибудь.
А под ним квадрат половины p ,
Ты, убавь на q и конец,
Будет формула приведенная,
Рассуждений твоих венец.
Будет формула приведенная,
Рассуждений твоих венец.

Теорема Виета

Формулировка для приведённого квадратного уравнения

Сумма корней приведённого квадратного уравнения (вещественных или комплексных) равна второму коэффициенту , взятому с противоположным знаком, а произведение этих корней — свободному члену :

С его помощью приведённые уравнения можно решать устно:

Для неприведённого квадратного уравнения

В общем случае, то есть для неприведённого квадратного уравнения

На практике (следуя методу «переброски» ) для вычисления корней применяется модификация теорема Виета:

по которой можно устно находить ax 1 , ax 2 , а оттуда — сами корни:

Но у некоторых неприведённых уравнений корни можно устно угадать даже по стандартной теореме Виета:

Разложение квадратного трёхчлена на множители и теоремы, следующие из этого

Если известны оба корня квадратного трёхчлена, его можно разложить по формуле

(2)

Доказательство

Для доказательства этого утверждения воспользуемся теоремой Виета. Согласно этой теореме, корни и квадратного уравнения образуют соотношения с его коэффициентами: . Подставим эти соотношения в квадратный трёхчлен:

В случае нулевого дискриминанта это соотношение становится одним из вариантов формулы квадрата суммы или разности .

Из формулы (2) имеются два важных следствия:

Следствие 1

Если квадратный трёхчлен раскладывается на линейные множители с вещественными коэффициентами, то он имеет вещественные корни.

Доказательство

Пусть . Тогда, переписав это разложение, получим:

.

Сопоставив полученное выражение с формулой (2), находим, что корнями такого трёхчлена являются и . Так как коэффициенты вещественны, то и числа, противоположные их отношениям также являются элементами множества .

Следствие 2

Если квадратный трёхчлен не имеет вещественных корней, то он не раскладывается на линейные множители с вещественными коэффициентами.

Доказательство

Действительно, если мы предположим противное (что такой трёхчлен раскладывается на линейные множители), то, согласно следствию 1 , он имеет корни в множестве , что противоречит условию, а потому наше предположение неверно, и такой трёхчлен не раскладывается на линейные множители.

Для квадратичной функции :
f ( x ) = x 2 x − 2 = ( x + 1)( x − 2) действительной переменной x , x координаты точки, где график пересекает ось абсцисс, x = −1 и x = 2, являются решениями квадратного уравнения: x 2 x − 2 = 0.

Уравнения, сводящиеся к квадратным

Алгебраические

Уравнение вида является уравнением, сводящимся к квадратному.

В общем случае оно решается методом введения новой переменной , то есть заменой где множество значений функции , c последующим решением квадратного уравнения .

Также при решении можно обойтись без замены, решив совокупность двух уравнений:

и

К примеру, если , то уравнение принимает вид:

Такое уравнение 4-й степени называется биквадратным .

С помощью замены

к квадратному уравнению сводится уравнение

известное как возвратное или обобщённо-симметрическое уравнение .

Дифференциальные

Линейное однородное дифференциальное уравнение с постоянными коэффициентами второго порядка

подстановкой сводится к характеристическому квадратному уравнению:

Если решения этого уравнения и не равны друг другу, то общее решение имеет вид:

, где и — произвольные постоянные.

Для комплексных корней можно переписать общее решение, используя формулу Эйлера :

где A , B , C , φ — любые постоянные. Если решения характеристического уравнения совпадают , общее решение записывается в виде:

Уравнения такого типа часто встречаются в самых разнообразных задачах математики и физики, например, в теории колебаний или теории цепей переменного тока .

Примечания

  1. .
  2. другой вариант — «несчастное»
  3. Имеет смысл применять теорему Виета, если уравнение имеет два различных корня [вещественных], то есть дискриминант уравнения положительный ( ). В противном случае, использование теоремы НЕ является рациональным, так как при корней нет, а при следует решать квадратное уравнение выделением полного квадрата — одним из способов метода разложения на множители .
  4. Математический энциклопедический словарь. — М.: Советская энциклопедия. — 1988.

Литература

  • Квадратное уравнение; Квадратный трёхчлен // / Сост. А. П. Савин. — М. : Педагогика , 1985. — С. -136. — 352 с.

Ссылки

  • Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
  • от 28 января 2016 на Wayback Machine / Фестиваль педагогических идей «Открытый урок».
Источник —

Same as Квадратное уравнение