Базис
- 1 year ago
- 0
- 0
Ба́зис ( др.-греч. βάσις «основа») — упорядоченный (конечный или бесконечный) набор векторов в векторном пространстве или модуле , такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора. Векторы базиса называются базисными векторами .
В случае, когда базис бесконечен, понятие «линейная комбинация» требует уточнения. Это ведёт к двум основным разновидностям определения:
В конечномерных пространствах оба определения базиса совпадают.
У Евклида и других древнегреческих математиков слово «базис» (βάσις, в значении основание ) обозначало горизонтальное основание плоской или пространственной фигуры. Современный математический смысл этому термину придал Дедекинд в статье 1885 года .
Любой декартовой системе координат на плоскости или в трёхмерном пространстве (также и в пространстве другой размерности) может быть сопоставлен базис, состоящий из векторов, каждый из которых направлен вдоль своей координатной оси. Это относится и к прямоугольным декартовым координатам (тогда соответствующий базис называется ортогональным ), так и к косоугольным декартовым координатам (которым будет соответствовать неортогональный базис).
Часто удобно выбрать длину ( норму ) каждого из базисных векторов единичной, такой базис называется нормированным.
Наиболее часто базис выбирают ортогональным и нормированным одновременно, тогда он называется ортонормированным .
В любом векторном пространстве базис можно выбрать различным образом (поменяв направления его векторов или их длины, например).
Обозначение векторов базиса может быть, в принципе, произвольным. Часто используют какую-нибудь букву с индексом (числовым или совпадающим с названием координатной оси), например:
или
— типичные обозначения базиса двумерного пространства (плоскости),
или
— трёхмерного пространства. Для трёхмерного пространства часто по традиции используется и обозначение
Представление какого-то конкретного (любого) вектора пространства в виде линейной комбинации векторов базиса (суммы базисных векторов числовыми коэффициентами), например
или
или, употребляя знак суммы :
называется разложением этого вектора по этому базису.
Числовые коэффициенты называются коэффициентами разложения, а их набор в целом — представлением (или представителем) вектора в базисе (Разложение вектора по конкретному базису единственно; разложение одного и того же вектора по разным базисам — разное, то есть получается разный набор конкретных чисел, однако в результате при суммировании — как показано выше — дают один и тот же вектор).
Базис Га́меля — множество векторов в линейном пространстве , таких, что любой вектор пространства может быть представлен в виде некоторой их конечной линейной комбинации ( полнота базиса), и такое представление для любого вектора единственно.
Критерием единственности решения задачи разложения вектора по полной системе векторов является линейная независимость векторов, входящих в полную систему. Линейная независимость означает, что всякая линейная комбинация векторов системы, в которой хотя бы один коэффициент ненулевой, имеет ненулевую сумму. То есть это эквивалентно единственности разложения нулевого вектора.
В случае линейных пространств, когда всякий ненулевой коэффициент обратим, линейная независимость эквивалентна невозможности выразить какой-либо вектор полной системы линейной комбинацией остальных векторов. (В более общей ситуации — модулей над кольцами — эти два свойства неэквивалентны). Невозможность выразить никакой вектор базиса через остальные означает минимальность базиса как полной системы векторов — при удалении любого из них теряется полнота.
В вопросе о существовании базисов основной является следующая лемма (доказательство этой леммы в общем случае неконструктивно и использует аксиому выбора ):
Лемма. Пусть — полная, а — линейно независимая система векторов. Тогда система содержит набор векторов, дополняющий до базиса пространства .
Доказательство строится на применении леммы Цорна. Рассмотрим . Пусть — множество всех линейно независимых подмножеств . Это множество частично упорядочено по отношению включения.
Докажем, что объединение любой цепи линейно независимых множеств остаётся линейно независимым. Действительно, возьмём вектора из объединения и возьмём множества из цепи, которым эти вектора принадлежат: . Так как эти множества — элементы цепи, их объединение даст максимальное из них, которое линейно независимо, а значит и вектора , лежащие в этом множестве, также линейно независимы.
Объединение множеств цепи линейно независимо, а значит, содержится в множестве . Применим к нему усиленную формулировку леммы Цорна , которая утверждает, что для каждого элемента из есть максимальный элемент больший или равный ему. , а значит, есть такой максимальный элемент , что . Легко видеть, что есть базис. Действительно, не будь полной системой векторов, был бы вектор , непредставимый как линейная комбинация векторов из . Тогда — линейно независимая система, а значит, , что противоречит тому, что —— максимальный элемент .
Следствием этой леммы являются утверждения:
Любые два базиса в линейном пространстве равномощны , так что мощность базиса — величина, независящая от выбора базисных векторов. Она называется размерностью пространства (обозначается ). Если линейное пространство имеет конечный базис, его размерность конечна и оно называется конечномерным , в противном случае его размерность бесконечна, и пространство называется бесконечномерным.
Выбранный базис линейного пространства позволяет ввести координатное представление векторов, чем подготавливается использование аналитических методов.
Линейное отображение из одного линейного пространства в другое однозначно определено, если задано на векторах какого-нибудь базиса. Комбинация этого факта с возможностью координатного представления векторов предопределяет применение матриц для изучения линейных отображений векторных пространств (в первую очередь — конечномерных). При этом многие факты из теории матриц получают наглядное представление и приобретают весьма содержательный смысл, когда они выражены на языке линейных пространств. И выбор базиса при этом служит хоть и вспомогательным, но в то же время ключевым средством.
Базис Гамеля может быть использован для построения разрывной вещественной функции, удовлетворяющей условию . Пусть — базис Гамеля множества действительных чисел над полем рациональных чисел . Тогда для каждого ( ) положим , где произвольные вещественные числа, не все равные нулю одновременно; например, рациональные (в этом случае функция принимает лишь рациональные значения и тем самым гарантированно не является линейной функцией ). Такая функция аддитивна, то есть удовлетворяет функциональному уравнению Коши . Однако в общем случае, когда , она отличается от линейной функции и в силу этого является разрывной в любой точке, а также не сохраняет знак, не ни сверху, ни снизу, не монотонна , не интегрируема и не измерима на любом сколь угодно малом интервале, заполняя своими значениями на этом интервале всюдо плотно числовую ось .
Система векторов топологического векторного пространства называется базисом Шаудера (в честь Шаудера ), если каждый элемент разлагается в единственный , сходящийся к ряд по :
где — числа, называемые коэффициентами разложения вектора по базису .
Чтобы подчеркнуть отличие определения базиса Гамеля для общих линейных пространств (допускаются только конечные суммы) от базиса Шаудера для топологических векторных пространств (допускается разложение в сходящийся ряд ), для первого часто используют термин линейный базис , оставляя термин базис для разложений в ряды . Мощность линейного базиса называют также линейной размерностью . В конечномерных пространствах эти определения совпадают из-за конечности базиса. В бесконечномерных пространствах эти определения существенно различаются и линейная размерность может быть строго больше мощности базиса Шаудера.
Например, никакое бесконечномерное Гильбертово пространство не имеет счетного линейного базиса, хотя может иметь счетные базисы Шаудера с разложением в ряд, в том числе, ортонормированные базисы . Все ортонормированные базисы гильбертовых пространств являются базисами Шаудера, например, множество функций является базисом Шаудера в пространстве . В более общих банаховых пространствах понятие ортонормированного базиса неприменимо, но часто удаётся построить базисы Шаудера, не использующие ортогональности.
— банахово пространство с нормой . Для разложений в ряды Фурье и обобщенные ряды Фурье по ортонормированным системам функций легко доказывается сходимость в гильбертовом пространстве , но не в . Шаудер сконструировал базис Шаудера для . Пусть — плотное счетное множество точек на , , , остальные точки могут быть, например, всеми рациональными точками отрезка , упорядоченными произвольным образом. Положим: , — линейная функция. Определим кусочно-линейную функцию так, чтобы при и . Точки разбивают на отрезок. Точка лежит строго внутри одного из них. Пусть это для каких-то (порядок нумерации чисел не соответствует их величине).
Положим:
Полученная система кусочно-линейных «шапочек» и есть искомый базис Шаудера. Коэффициенты разложения произвольной функции по этому базису выражаются по явным рекуррентным формулам через последовательность значений . Частичная сумма первых членов ряда
является в данном случае кусочно-линейной аппроксимацией с узлами в точках ; формула для коэффициентов (см. Рис.)
Базисы Шаудера построены для большинства известных примеров банаховых пространств, однако проблема Банаха — Шаудера о существовании базиса Шаудера в каждом сепарабельном банаховом пространстве не поддавалась решению более 50 лет и лишь в 1972 году была решена отрицательно: существуют сепарабельные банаховы пространства без базиса Шаудера (контрпримеры Энфло , Шанковского, Дэви и Фигеля).
В векторной алгебре с помощью векторного произведения и смешанного произведения определяется понятие взаимного базиса к базису в трёхмерном евклидовом пространстве и используется для доказательства некоторых утверждений, связанных со смешанным произведением и углами между векторами :212-214 . В кристаллографии взаимный базис называется кристаллографическим определением базиса , на основе которого определяется обратная решётка .