Interested Article - Перманент
- 2020-07-16
- 1
Пермане́нт в математике — числовая функция , определённая на множестве всех матриц ; для квадратных матриц похожа на детерминант , и отличается от него лишь в том, что в разложении на перестановки (или на миноры ) берутся не чередующиеся знаки, а все плюсы. В отличие от детерминанта, определение перманента расширено и на неквадратные матрицы.
В литературе для обозначения перманента обычно используется одна из следующих нотаций: , или .
Определение
Перманент квадратной матрицы
Пусть — квадратная матрица размера , элементы которой принадлежат некоторому полю . Перманентом матрицы называется число:
- ,
где сумма берётся по всем перестановкам чисел от 1 до .
Например, для матрицы размера :
- .
Это определение отличается от аналогичного определения детерминанта лишь тем, что в детерминанте некоторые члены суммы имеют отрицательный знак, в зависимости от знака перестановки .
Перманент прямоугольной матрицы
Понятие перманента иногда расширяют на случай произвольной прямоугольной матрицы размера следующим способом. Если , то:
- ,
где сумма берётся по всем -элементным размещениям из множества чисел от 1 до .
Если же , то:
- .
Или, что эквивалентно, перманент прямоугольной матрицы можно определить как сумму перманентов всех её квадратных подматриц порядка .
Свойства
Перманент любой диагональной или треугольной матрицы равен произведению элементов на её диагонали. В частности, перманент нулевой матрицы равен нулю, а перманент единичной матрицы — единице.
Перманент не изменяется при транспонировании : . В отличие от детерминанта, перманент матрицы не изменяется от перестановки строк или столбцов матрицы.
Перманент является линейной функцией от строк (или столбцов) матрицы, то есть:
- если умножить любую одну строку (столбец) на некоторое число , то и значение перманента увеличится в раз;
- перманент суммы двух матриц, отличающихся лишь одной строкой (столбцом), равен сумме их перманентов.
Аналог разложения Лапласа по первой строке матрицы для перманента:
- ,
где — перманент матрицы, получающейся из удалением -й строки и -го столбца. Так, например, для матрицы размера , имеет место:
- .
Перманент матрицы порядка — однородная функция порядка :
- , где — скаляр.
Если — перестановочная матрица , то:
- ;
- для любой матрицы того же порядка.
Если матрица состоит из неотрицательных действительных чисел, то .
Если и — две верхние (или нижние) треугольные матрицы , то:
- ,
(в общем случае равенство не выполняется для произвольных и , в отличие от аналогичного свойства детерминантов).
Перманент дважды стохастической матрицы порядка не менее, чем ( гипотеза ван дер Вардена , доказанная в 1980 году).
Вычисление перманента
В отличие от детерминанта, который может быть легко вычислен, например методом Гаусса , вычисление перманента является очень трудоёмкой вычислительной задачей, относящейся к классу сложности #P-полных задач. Она остаётся #P-полной даже для матриц, состоящих лишь из нулей и единиц .
В настоящее время [ уточнить ] неизвестен алгоритм решения таких задач за полиномиальное от размера матрицы время. Существование подобного полиномиального алгоритма было бы даже более сильным утверждением, чем знаменитое P=NP .
В декабре 2012 четыре независимые группы исследователей предложили прототип квантового фотонного устройства, вычисляющего перманент матрицы .
Формула Райзера
Вычисление перманента по определению обладает сложностью (или даже при «грубой» реализации). Оценку можно значительно улучшить, воспользовавшись формулой Райзера :
- ,
с ней перманент может быть вычислен за время или даже , если перечислять подмножества по коду Грея .
Приложения
Перманент практически не используется в линейной алгебре , но находит применение в дискретной математике и комбинаторике.
Перманент матрицы , состоящей из нулей и единиц, можно интерпретировать, как число полных паросочетаний в двудольном графе с матрицей смежности (то есть ребро между -й вершиной одной доли и -й вершиной другой доли существует, если ).
Перманент произвольной матрицы можно рассматривать как сумму весов всех полных паросочетаний в полном двудольном графе, где под весом паросочетания понимается произведение весов его рёбер, а веса рёбер записаны в элементах матрицы смежности .
Примечания
- Leslie G. Valiant . The Complexity of Computing the Permanent (англ.) // . — Elsevier, 1979. — Vol. 8 . — P. 189—201 . — doi : .
- . Лента.ру (24 декабря 2012). Дата обращения: 25 декабря 2012. 26 декабря 2012 года.
- Ryser H. J., «Combinatorial Mathematics», The Carus mathematical monographs series, published by Mathematical Association of America , 1963 (есть русский перевод 1966 г.)
- Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
Литература
- Минк Х. Перманенты. — М. : Мир, 1982. — 211 с.
Ссылки
- Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
- (англ.) на сайте PlanetMath .
- 2020-07-16
- 1