Interested Article - Перманент

Пермане́нт в математике — числовая функция , определённая на множестве всех матриц ; для квадратных матриц похожа на детерминант , и отличается от него лишь в том, что в разложении на перестановки (или на миноры ) берутся не чередующиеся знаки, а все плюсы. В отличие от детерминанта, определение перманента расширено и на неквадратные матрицы.

В литературе для обозначения перманента обычно используется одна из следующих нотаций: , или .

Определение

Перманент квадратной матрицы

Пусть — квадратная матрица размера , элементы которой принадлежат некоторому полю . Перманентом матрицы называется число:

,

где сумма берётся по всем перестановкам чисел от 1 до .

Например, для матрицы размера :

.

Это определение отличается от аналогичного определения детерминанта лишь тем, что в детерминанте некоторые члены суммы имеют отрицательный знак, в зависимости от знака перестановки .

Перманент прямоугольной матрицы

Понятие перманента иногда расширяют на случай произвольной прямоугольной матрицы размера следующим способом. Если , то:

,

где сумма берётся по всем -элементным размещениям из множества чисел от 1 до .

Если же , то:

.

Или, что эквивалентно, перманент прямоугольной матрицы можно определить как сумму перманентов всех её квадратных подматриц порядка .

Свойства

Перманент любой диагональной или треугольной матрицы равен произведению элементов на её диагонали. В частности, перманент нулевой матрицы равен нулю, а перманент единичной матрицы — единице.

Перманент не изменяется при транспонировании : . В отличие от детерминанта, перманент матрицы не изменяется от перестановки строк или столбцов матрицы.

Перманент является линейной функцией от строк (или столбцов) матрицы, то есть:

  • если умножить любую одну строку (столбец) на некоторое число , то и значение перманента увеличится в раз;
  • перманент суммы двух матриц, отличающихся лишь одной строкой (столбцом), равен сумме их перманентов.

Аналог разложения Лапласа по первой строке матрицы для перманента:

,

где — перманент матрицы, получающейся из удалением -й строки и -го столбца. Так, например, для матрицы размера , имеет место:

.

Перманент матрицы порядка однородная функция порядка :

, где — скаляр.

Если перестановочная матрица , то:

;
для любой матрицы того же порядка.

Если матрица состоит из неотрицательных действительных чисел, то .

Если и — две верхние (или нижние) треугольные матрицы , то:

,

(в общем случае равенство не выполняется для произвольных и , в отличие от аналогичного свойства детерминантов).

Перманент дважды стохастической матрицы порядка не менее, чем ( гипотеза ван дер Вардена , доказанная в 1980 году).

Вычисление перманента

В отличие от детерминанта, который может быть легко вычислен, например методом Гаусса , вычисление перманента является очень трудоёмкой вычислительной задачей, относящейся к классу сложности #P-полных задач. Она остаётся #P-полной даже для матриц, состоящих лишь из нулей и единиц .

В настоящее время [ уточнить ] неизвестен алгоритм решения таких задач за полиномиальное от размера матрицы время. Существование подобного полиномиального алгоритма было бы даже более сильным утверждением, чем знаменитое P=NP .

В декабре 2012 четыре независимые группы исследователей предложили прототип квантового фотонного устройства, вычисляющего перманент матрицы .

Формула Райзера

Вычисление перманента по определению обладает сложностью (или даже при «грубой» реализации). Оценку можно значительно улучшить, воспользовавшись формулой Райзера :

,

с ней перманент может быть вычислен за время или даже , если перечислять подмножества по коду Грея .

Приложения

Перманент практически не используется в линейной алгебре , но находит применение в дискретной математике и комбинаторике.

Перманент матрицы , состоящей из нулей и единиц, можно интерпретировать, как число полных паросочетаний в двудольном графе с матрицей смежности (то есть ребро между -й вершиной одной доли и -й вершиной другой доли существует, если ).

Перманент произвольной матрицы можно рассматривать как сумму весов всех полных паросочетаний в полном двудольном графе, где под весом паросочетания понимается произведение весов его рёбер, а веса рёбер записаны в элементах матрицы смежности .

Примечания

  1. Leslie G. Valiant . The Complexity of Computing the Permanent (англ.) // . — Elsevier, 1979. — Vol. 8 . — P. 189—201 . — doi : .
  2. . Лента.ру (24 декабря 2012). Дата обращения: 25 декабря 2012. 26 декабря 2012 года.
  3. Ryser H. J., «Combinatorial Mathematics», The Carus mathematical monographs series, published by Mathematical Association of America , 1963 (есть русский перевод 1966 г.)
  4. Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .

Литература

  • Минк Х. Перманенты. — М. : Мир, 1982. — 211 с.

Ссылки

Источник —

Same as Перманент