Interested Article - Приливный разогрев
- 2021-12-08
- 1
Приливный разогрев является следствием процесса приливного ускорения : энергия орбитального движения рассеивается как тепловая в океане или недрах планеты или спутника. Когда объект движется по эллиптической орбите , приливная сила для него оказывается различной в разных точках орбиты. Таким образом происходит постоянная деформация тела под действием приливных сил, что создает внутреннее трение, которое нагревает недра. Происходит переход гравитационной энергии в тепловую, поэтому в системе двух тел изначально эллиптическая орбита с ходом времени становится круговой. Однако процесс приливного разогрева становится длительным в случае, когда в более сложной системе дополнительные гравитационные силы не дают эллиптической орбите перейти в круговую, в этом случае гравитационная энергия продолжает преобразовывается в тепловую.
Приливный разогрев является причиной вулканической активности на большинстве тел Солнечной системы , среди которых ярким примером является Ио , спутник Юпитера . Ио сохраняет вытянутую орбиту как результат орбитального резонанса с другим галилеевыми спутниками . Этот же процесс, но с несколько меньшим значением (из-за меньшего эксцентриситета ) рассматривается в теории как сила достаточная, чтобы расплавить низкие слои льда на следующем крупном спутнике Юпитера, Европе и создать таким образом подледный океан. На спутнике Сатурна Энцеладе так же предполагают жидкий водный океан под ледяной корой, также вследствие приливного разогрева. Водяные гейзеры на Энцеладе предположительно приводятся в действие этой же силой .
Величина приливного разогрева в спутнике, который находится в приливном захвате и имеет вытянутую орбиту , вычисляется по формуле:
- ,
где , , являются соответственно средним радиусом спутника, средним орбитальным движением и эксцентриситетом .
См. также
Примечания
- Peale, S. J.; Cassen, P.; Reynolds, R. T. (1979), "Melting of Io by Tidal Dissipation", Science , 203 (4383): 892—894, Bibcode : , doi : , JSTOR , PMID
- Peale, S.J. Tidally induced volcanism. Celest. Mech. & Dyn. Astr. 87, 129- 155, 2003.
- Segatz, M., T. Spohn, M. N. Ross, and G. Schubert. 1988. «Tidal Dissipation, Surface Heat Flow, and Figure of Viscoelastic Models of Io.» Icarus 75: 187. doi:10.1016/0019-1035(88)90001-2.
- 2021-12-08
- 1