Interested Article - Обозначения Ньютона

Обозначения Ньютона , введенные в математику Ньютоном , в основном касаются некоторых деталей алгебры и операции дифференцирования .

Алгебра

Современная запись показателя степени в виде надстрочного индекса (x a ) введена Декартом ( 1637 ) только для натуральных степеней, больших 2. Ньютон распространил эту форму записи на отрицательные и дробные показатели ( 1676 ), трактовку которых к этому времени уже предложили Стевин , Валлис и Жирар .

В 1717 году Ньютон предложил индексацию для нумерации однородных переменных в современном виде: ( ). Первое время, из-за типографских ограничений, индексы печатались не ниже строки, а на том же уровне.

Математический анализ

Производную по времени Ньютон обозначал точкой, расположенной над символом функции. Примеры:

и так далее.

Такую точечную нотацию не очень удобно использовать для производных высших порядков (более второго). Однако в механике , инженерных науках, макроэкономике она используется, если производная берётся по времени (а не по пространственным координатам).

Ньютон, в отличие от Лейбница, не предложил символики интеграла, хотя пробовал различные варианты: вертикальную черту над функцией или символ квадрата, который стоит перед функцией или окаймляет её.

Ньютон также способствовал закреплению в науке символа бесконечно малого ( «o» малое ), которое ранее предложил шотландский математик Джеймс Грегори .

См. также

Литература

  • Александрова Н. В. История математических терминов, понятий, обозначений: Словарь-справочник, изд. 3-е. — СПб. : ЛКИ, 2008. — 248 с. — ISBN 978-5-382-00839-4 .
  • История математики под редакцией А. П. Юшкевича в трёх томах, М., Наука. Том 2.
  • Кэджори Ф. / Пер. И. Ю. Тимченко. — 2-е изд., испр. — Одесса: Mathesis, 1917.
  • Cajori F. A History of Mathematical Notations. — New York: Cosimo, Inc, 2007 (1929 reprint). — ISBN 978-1-60206-714-1 .
Источник —

Same as Обозначения Ньютона