Interested Article - Квазимногообразие

Квазимногообра́зие (от лат. quas(i) «наподобие», «нечто вроде») в универсальной алгебре — класс алгебраических систем фиксированной сигнатуры , аксиоматизируемый набором квазитождеств ( хорновскими дизъюнктами ).

В отличие от многообразий — классов алгебраических систем, аксиоматизируемых тождествами — особую роль в теории квазимногообразий играют теоретико-модельные методы, тогда как многообразия в основном рассматриваются для алгебр (алгебраических систем без отношений в сигнатуре) и изучаются общеалгебраическими методами .

Определения

Для алгебраической системы с набором операций и отношений квазиатомарными считаются формулы вида:

  1. (или в нотации отношений: ),
  2. ,

где , , а — символы переменных. (Иногда равенство включают в сигнатуру алгебраической системы как отношение и в этом случае достаточно формул первого вида.)

Квазитождества — формулы вида:

где — квазиатомарные формулы с переменными . Квазимногообразие — класс алгебраических систем, задаваемый набором квазитождеств.

Характеристические свойства

Всякое многообразие алгебраических систем является квазимногообразием вследствие того, что всякое тождество (из квазиатомарной формулы) можно заменить, например, равносильным ему квазитождеством .

Если квазимногообразие конечно аксиоматизируемо, то оно конечно определимо .

Единичная алгебраическая система для заданной сигнатуры , то есть система с носителем из одного элемента , при которой и , является квазимногообразием (и, более того, многообразием). Наименьшее квазимногообразие заданной сигнатуры является многообразием, задаётся тождествами и и состоит из единственной единичной системы. Наибольшее квазимногообразие заднной сигнатуры также является многообразием — классом всех систем заданной сигнатуры, задаваемым тождеством .

Всякое квазимногообразие включает произвольное входящих в него систем .

Чтобы класс систем являлся квазимногообразием необходимо и достаточно, чтобы он был одновременно локально замкнут, мультипликативно замкнут (содержал любое декартово произведение своих систем) и содержал единичную систему. Локальная и мультипликативная замкнутость для этого признака могут быть эквивалентно заменены на замкнутость относительно фильтрованных произведений и [ уточнить ] .

Определяющие соотношения

Свободные композиции

Решётки квазимногообразий

История

Первым результатом применения квазитождеств в общей алгебре считается результат Анатолия Мальцева 1939 года , в котором построена бесконечная серия квазитождеств, характеризующая класс вложимых в группы полугрупп . В работе 1943 года связал с квазитождествами некоторые алгоритмические проблемы алгебры, а одним из результатов решения в 1945 году задачи о существовании недистрибутивных решёток с единственным дополнением, стало доказательство факта, что квазимногообразия имеют свободные системы.

Теорема Новикова (1955) о неразрешимости проблемы равенства слов в группах фактически означает неразрешимость хорновой теории групп , то есть также может быть отнесена к результатам, относящимся к квазимногообразниям.

Становление теории квазимногообразий как самостоятельной ветви универсальной алгебры относится к работам Мальцева, Табаты и Фудзивары конца 1950-х — начала 1960-х годов. Доклад Мальцева на Международном конгрессе математиков 1966 года в Москве, в котором были сформулированы некоторые важные проблемы, относящиеся к квазимногообразиям, способствовал росту интереса математиков к этой ветви .

Особый всплеск интереса к теории квазимногообразий проявился в 1970-е годы, когда началось широкое применение хорновой логики в логическом программировании (прежде всего, в работах, связанных с языком программирования Пролог ) и в теории баз данных .

Примечания

  1. , Принципиальное отличие состоит в том, что в теории многообразий исследуются алгебры, в то время как в теории квазимногообразий — произвольные алгебраические системы, с. viii.
  2. , с. 268.
  3. , с. 269—270.
  4. , с. 270.
  5. , с. 271.
  6. , Теорема 2, Следствие 3, с. 271—272.
  7. Мальцев А. И. О включении ассоциативных систем в группы // Математический сборник. — 1999. — Т. 6 , № 2 . — С. 331—336 .
  8. McKinsey J. The desicion problem for some classes of sentences without quqntifiers // Journal of Symbolic Logic. — 1943. — Т. 8 . — С. 61—76 .
  9. R. P. Dilworth. Lattices with unique complements // Transactions of American Mathematics Society. — 1945. — Т. 56 . — С. 123—154 .
  10. , с. vii—viii.

Литература

  • Алгебраическая теория квазимногообразий. — Новосибирск : Научная книга, 1999. — 368 с. — (Сибирская школа алгебры и логики). — ISBN 5-88119-015-7 .
  • Аратмонов В. А.; Салий В. Н.; Скорняков Л. А.; Шеврин Л. Н.; Шульгейфер Е. Г. Универсальные алгебры // Общая алгебра / под общей редакцией . — М. : Наука , 1991. — Т. 2. — С. 295—367. — 480 с. — (Справочная математическая библиотека). — 25 500 экз. ISBN 5-02-014427-4 .
  • Мальцев А. И. Алгебраические системы. — М. : Наука , 1970. — 392 с. — 17 500 экз.
Источник —

Same as Квазимногообразие