Interested Article - Предпорядок
![](https://wafarin.com/images/000/663/663948/21.jpg?819007)
![](https://cdn.wafarin.com/avatars/6a6f9ac08513a095b191a1f0789b03ac.png)
- 2020-08-04
- 1
Предпоря́док ( квазипоря́док ) — бинарное отношение на множестве , обладающее свойствами рефлексивности и транзитивности . Обычно это отношение обозначается , тогда аксиомы предпорядка на множестве принимают вид:
- ,
- .
Линейный предпорядок — предпорядок на множестве, для которого любые два элемента множества сравнимы:
- .
Теория категорий
Категория называется предпорядком , если для любых двух объектов существует не более одного морфизма . Если — малая категория , то на множестве её объектов можно задать отношение предпорядка по следующему правилу:
- .
Из аксиом категории следует, что такое отношение будет рефлексивным и транзитивным. Предпорядок — , то есть его в общем случае нельзя представить как категорию некоторых множеств с заданной структурой и отображениями, сохраняющими эту структуру. Также предпорядок — .
Если малая категория полна в малом , то она является предпорядком, причём каждое малое множество его элементов имеет наибольшую нижнюю грань. Произведение набора (множества, класса) объектов предпорядка — это наибольшая нижняя грань для этого набора. Копроизведение набора объектов — это его наименьшая верхняя грань . Начальный объект в предпорядке , если он существует, — это его наименьший объект, так что . Аналогично, терминальный объект предпорядка — это наибольший объект в нём.
Объектами категории предпорядков (обозначаемой обычно Морфизмы в этой категории — отображения множеств, сохраняющие отношение предпорядка, то есть монотонные отображения . Подкатегория малых предпорядков — конкретная категория , наделённая очевидным унивалентным забывающим функтором :
) являются предпорядки (в смысле категорий), в частности, множества, на которых задано отношение предпорядка.- ,
сопоставляющим каждому малому предпорядку множество его объектов, а каждому морфизму — монотонное отображение соответствующих множеств. Этот функтор создаёт пределы в . Таким образом, аналогично , начальным объектом в является пустое множество , терминальным объектом — множество из одного элемента, произведением объектов — прямое произведение соответствующих множеств с покомпонентным сравнением.
Литература
- Голдблатт Р. Топосы. Категорный анализ логики = Topoi. The categorial analysis of logic / Пер. с англ. В. Н. Гришина и В. В. Шокурова под ред. Д. А. Бочвара. — М. : Мир , 1983. — 488 с.
- Маклейн С. Глава 1. Категории, функторы и естественные преобразования // Категории для работающего математика = Categories for the working mathematician / Пер. с англ. под ред. В. А. Артамонова . — М. : Физматлит, 2004. — С. 17—42. — 352 с. — ISBN 5-9221-0400-4 .
![](https://cdn.wafarin.com/avatars/6a6f9ac08513a095b191a1f0789b03ac.png)
- 2020-08-04
- 1