Теорема Стокса
- 1 year ago
- 0
- 0
Теорема Клини о неподвижной точке — утверждение о существовании наименьшей неподвижной точки у всякого непрерывного по Скотту отображения полного частично упорядоченного множества на себя. Результат относят к Стивену Клини ; используется в ( англ. ), теории решёток , теории графов , теории автоматов .
Ещё одно из утверждений класса — теорема Кнастера — Тарского — гарантирует существование наименьшей неподвижной точки для отображений на себя; теорема Клини о неподвижной точке говорит о существовании таковой для отображений любых полных частично упорядоченных множеств, но её действие распространено не на любые монотонные функции, а только на функции, непрерывные в топологии Скотта. Кроме того, теорема Клини, в отличие от теоремы Кнастера — Тарского, обеспечивает способ вычисления наименьшей неподвижной точки отображения как точной верхней грани его цепи Клини ото дна частичного упорядоченного множества :