Interested Article - Простое число Вагстафа

В теории чисел простым числом Вагстафа (Wagstaff) называется простое число p вида

где q – другое простое число. Числа названы в честь математика (Samuel S. Wagstaff Jr.) Сайт приписывает наименование чисел Франсуазу Морану (François Morain), который назвал их так на конференции Eurocrypt 1990. Простые числа Вагстафа имеют отношение к и имеют приложение в криптографии .

Примеры

Три первых числа Вагстафа – это 3, 11 и 43, поскольку

Известные числа Вагстафа

Первые несколько чисел Вагстафа:

3, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, … (последовательность в OEIS )

Несколько первых показателей q , которые порождают простые Вагстафа или вероятно простые :

3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321, 986191, 4031399, …, 13347311, 13372531, 15135397, … (последовательность в OEIS )

В феврале 2010 года Тони Рейх (Tony Reix) обнаружил вероятно простое число Вагстафа:

Оно состоит из 1 213 572 цифр и на тот момент являлось третьим наибольшим известным PRP .

В сентябре 2013 года Райан Проппер объявил о нахождении еще двух вероятно простых чисел Вагстафа:

Каждое из них является вероятно простым числом из чуть более чем 4 миллионов цифр. Они заняли 1-е и 2-е место в рейтинге наибольших известных PRP . При этом оставалось неизвестным, существуют ли еще какие-либо показатели степени между 4 031 399 и 13 347 311, которые являлись бы вероятно простыми числами Вагстафа.

В июне 2021 года Райан Проппер вновь объявил о рекорде:

Это число состоит из более чем 4.5 миллионов цифр и является на текущий момент наибольшим известным простым числом Вагстафа и третьим по величине PRP .

Проверка простоты

Числа Вагстафа проверены на простоту для q вплоть до 83339. Числа с q > 83339 являются возможно простыми. Проверка простоты для q = 42737 была проведена Франсуа Мораном (François Morain) в 2007 году в проекте распределенных вычислений , реализованном на нескольких сетях станций, работающих на процессоре Opteron . Это было четвертое по величине значение, проверенное в ECPP к 2010-му году .

На текущий момент самым быстрым алгоритмом проверки простоты чисел Вагстафа является ECPP.

Примечания

  1. . Дата обращения: 24 марта 2010. 24 марта 2010 года.
  2. от 28 сентября 2022 на Wayback Machine , mersenneforum.org
  3. . Дата обращения: 5 октября 2013. 5 октября 2013 года.
  4. от 24 сентября 2022 на Wayback Machine , mersenneforum.org
  5. . Дата обращения: 29 июня 2021. 29 июня 2021 года.
  6. Comment by François Morain, от 2 мая 2013 на Wayback Machine at The .
  7. Caldwell, Chris, , The от 10 декабря 2008 на Wayback Machine

Ссылки

Источник —

Same as Простое число Вагстафа