Interested Article - Алгоритм Брона — Кербоша

Алгоритм Брона — Кербоша метод ветвей и границ для поиска всех клик (а также максимальных по включению независимых множеств вершин ) неориентированного графа . Разработан голландскими математиками Броном и Кербошем в 1973 году и до сих пор является одним из самых эффективных алгоритмов поиска клик.

Алгоритм

Алгоритм использует тот факт, что всякая клика в графе является его максимальным по включению полным подграфом . Начиная с одиночной вершины (образующей полный подграф), алгоритм на каждом шаге пытается увеличить уже построенный полный подграф, добавляя в него вершины из множества кандидатов. Высокая скорость обеспечивается отсечением при переборе вариантов, которые заведомо не приведут к построению клики, для чего используется дополнительное множество, в которое помещаются вершины, которые уже были использованы для увеличения полного подграфа.

Алгоритм оперирует тремя множествами вершин графа:

  1. Множество compsub — множество, содержащее на каждом шаге рекурсии полный подграф для данного шага. Строится рекурсивно.
  2. Множество candidates — множество вершин, которые могут увеличить compsub
  3. Множество not — множество вершин, которые уже использовались для расширения compsub на предыдущих шагах алгоритма.

Алгоритм является рекурсивной процедурой, применяемой к этим трем множествам.

ПРОЦЕДУРА extend (candidates, not):
  ПОКА candidates НЕ пусто И not НЕ содержит вершины, СОЕДИНЕННОЙ СО ВСЕМИ вершинами из candidates, 
  ВЫПОЛНЯТЬ:
  1 Выбираем вершину v из candidates и добавляем её в compsub
  2 Формируем new_candidates и new_not, удаляя из candidates и not вершины, не СОЕДИНЕННЫЕ с v
  3 ЕСЛИ new_candidates и new_not пусты
  4 ТО compsub – клика
  5 ИНАЧЕ рекурсивно вызываем extend (new_candidates, new_not)
  6 Удаляем v из compsub и candidates, и помещаем в not

Вариации

Нахождение максимальных (по включению) независимых множеств вершин

Нетрудно видеть, что задача о клике и задача о независимом множестве по сути эквивалентны: каждая из них получается из другой, путём построения дополнения графа — такого графа, в котором есть все вершины исходного графа, причем в дополнении графа вершины соединены ребром тогда и только тогда, если они не были соединены в исходном графе.

Поэтому алгоритм Брона — Кербоша можно использовать для нахождения максимальных по включению независимых множеств вершин, если построить дополнение к исходному графу, либо изменив условие в основном цикле (условие остановки) и формирование новых множеств new_candidates и new_not :

  1. Условие в основном цикле: not не должно содержать ни одной вершины, НЕ СОЕДИНЕННОЙ НИ С ОДНОЙ из вершин во множестве candidates
  2. Для формирования new_candidates и new_not , необходимо удалять из candidates и not вершины, СОЕДИНЕННЫЕ с выбранной вершиной.

Вычислительная сложность

Линейна относительно количества клик в графе. Tomita, Tanaka и Haruhisa в 2006 показали, что в худшем случае алгоритм работает за O (3 n /3 ), где n — количество вершин в графе.

См. также

Литература

  • , (1973), , Comm. of ACM, 16, p. 575—577.
  • Etsuji Tomita, Akira Tanaka, Haruhisa Takahashi (2006), , Theoretical Computer Science, Vol 363, Issue 1, ISSN:0304-3975, p. 28-42.


Источник —

Same as Алгоритм Брона — Кербоша