Interested Article - Квадратичное поле

Квадратичное поле алгебраическое числовое поле степени 2 над . Можно доказать, что отображение задаёт биекцию между множеством свободных от квадратов целых чисел и множеством всех попарно неизоморфных квадратичных полей. Если квадратичное поле называется действительным , в противном случае — мнимым или комплексным .

Кольцо целых квадратичного поля

Для любого алгебраического числового поля можно рассмотреть его кольцо целых, то есть множество элементов, являющихся корнями приведенных многочленов с целыми коэффициентами. В случае квадратичного поля это корни приведенных квадратных уравнений с целыми коэффициентами, все числа такого вида нетрудно описать.

Пусть — свободное от квадратов целое число, сравнимое с 2 или 3 по модулю 4. Тогда кольцо целых соответствующего квадратичного поля (обозначаемое ) — это множество линейных комбинаций вида ( квадратичных иррациональностей ), где , с обычными операциями сложения и умножения комплексных чисел . Соответственно, если , кольцо целых состоит из чисел вида , где .

Примеры колец целых

Простые числа Эйзенштейна на комплексной плоскости

Дискриминант

Дискриминант квадратичного поля равен d , когда d сравнимо с 1 по модулю 4, и 4 d в противном случае. Например, дискриминант поля гауссовых рациональных чисел равен −4.

Разложение на простые в кольце целых

Любое кольцо целых является дедекиндовым , поэтому для любого его идеала существует и единственно разложение на простые идеалы. Пусть p простое число , тогда для главного идеала , порожденного p в ( K — произвольное квадратичное поле) возможны следующие три случая:

  • ( p ) — простой идеал. Факторкольцо по нему — конечное поле из p 2 элементов:
  • ( p ) раскладывается в произведение двух различных простых идеалов.
  • ( p ) — квадрат простого идеала. Тогда факторкольцо по нему содержит ненулевые нильпотенты .

Третий случай происходит тогда и только тогда, когда p делит дискриминант поля D (например, идеал (2) является квадратом идеала (1+ i ) в кольце гауссовых целых чисел). Первый и второй случаи происходят когда символ Кронекера равен −1 и 1 соответственно.

Примечания

  1. Dummit, pagе 229

Литература

Источник —

Same as Квадратичное поле