Interested Article - Конденсация Доджсона

В математике , конденсация Доджсона — это метод вычисления определителей . Метод назван в честь его создателя Чарльза Доджсона (более известного как Льюис Кэрролл ). Метод заключается в понижении порядка определителя специальным образом до порядка 1, единственный элемент которого и является искомым определителем.

Общий метод

Алгоритм может быть описан с помощью следующих четырёх этапов:

1. Пусть — заданная квадратная матрица размера . Запишем матрицу таким образом, чтобы она содержала только ненулевые элементы во внутренней части, то есть , если . Это может быть сделано, например, с помощью операции добавления к строке матрицы некоторой другой строки, умноженной на некоторое число.

2. Запишем матрицу размера , состоящую из миноров порядка 2 матрицы . В явном виде:

3. Применяя этап № 2 к матрице , запишем матрицу размера , разделив соответствующие элементы полученной матрицы на внутренние элементы матрицы :

4. Пусть и . Повторяем этап № 3 до тех пор, пока не получим матрицу порядка 1. Её единственный элемент и будет искомым определителем.

Примеры

Без нулей

Пусть необходимо вычислить определитель

Составим матрицу из миноров порядка 2:

Составим матрицу :

Элементы матрицы мы получили, разделив элементы полученной матрицы

на внутренние элементы матрицы

Повторяем этот процесс, пока не получим матрицу порядка 1:

Делим на внутреннюю часть матрицы размера , то есть на , получаем .

и есть искомый определитель исходной матрицы.

С нулями

Запишем необходимые матрицы:

Возникает проблема. Если мы продолжим этот процесс, то возникнет необходимость деления на 0. Однако мы можем переставить строки исходной матрицы и повторить процесс:

Таким образом, определитель исходной матрицы 36.

Тождество Доджсона и корректность конденсации Доджсона

Тождество Доджсона

Доказательство метода конденсации Доджсона основано на тождестве, известном, как тождество Доджсона (тождество Якоби ).

Пусть — квадратная матрица, и для всех обозначим минор матрицы , который получается вычёркиванием -й строки и -го столбца. Аналогично для обозначим минор, который получается из матрицы вычёркиванием -й и -й строк и -го и -го столбцов. Тогда

Доказательство тождества Доджсона

Доказательство корректности конденсации Доджсона

Литература

  • C. L. Dodgson. // Proceedings of the Royal Society of London. — 1866-1867. — Т. 15 . — С. 150–155 .
  • А. Л. // Математическое просвещение . Вторая серия. — 1958. — Вып. 3 . — С. 194 .
  • David Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture , MAA Spectrum, Mathematical Associations of America, Washington, D.C., 1999.
  • David Bressoud and Propp, James, How the alternating sign matrix conjecture was solved, Notices of the American Mathematical Society , 46 (1999), 637—646.
  • D. Knuth (1996) , Electronic Journal of Combinatorics , 3 , no. 2.
  • Mills, William H., Robbins, David P., and Rumsey, Howard, Jr., Proof of the Macdonald conjecture, Inventiones Mathematicae , 66 (1982), 73—87.
  • Mills, William H., Robbins, David P., and Rumsey, Howard, Jr., Alternating sign matrices and descending plane partitions, Journal of Combinatorial Theory, Series A , 34 (1983), 340—359.
  • Robbins, David P., The story of 1, 2, 7, 42, 429, 7436, …, The Mathematical Intelligencer , 13 (1991), 12—19.
  • Doron Zeilberger, Dodgson’s determinant evaluation rule proved by two-timing men and women. Elec. J. Comb. 4 (1997).

Ссылки

  • Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
Источник —

Same as Конденсация Доджсона