Преобразователь электрической энергии
- 1 year ago
- 0
- 0
Частотный преобразователь — электронное устройство для изменения частоты электрического тока ( напряжения ) .
Частотный асинхронный преобразователь частоты служит для преобразования сетевого трёхфазного или однофазного переменного тока частотой 50 (60) Гц в трёхфазный или однофазный ток, частотой от 1 Гц до 800 Гц.
Промышленностью выпускаются частотные преобразователи электроиндукционного типа, представляющего собой по конструкции асинхронный двигатель с фазным ротором , работающий в режиме генератора-преобразователя, и преобразователи электронного типа.
Частотные преобразователи электронного типа часто применяют для плавного регулирования скорости асинхронного электродвигателя или синхронного двигателя за счёт создания на выходе преобразователя электрического напряжения заданной частоты. В простейших случаях регулирование частоты и напряжения происходит в соответствии с заданной характеристикой V/f, в наиболее совершенных преобразователях реализовано так называемое векторное управление.
Частотный преобразователь электронного типа — это устройство, состоящее из выпрямителя (моста постоянного тока), преобразующего переменный ток промышленной частоты в постоянный, и инвертора (преобразователя) (иногда с ШИМ ), преобразующего постоянный ток в переменный требуемой частоты и амплитуды. Выходные тиристоры ( GTO ) или транзисторы ( IGBT ) обеспечивают необходимый ток для питания электродвигателя.
Для улучшения формы выходного напряжения между преобразователем и двигателем иногда ставят дроссель, а для уменьшения электромагнитных помех — EMC-фильтр.
Электронный преобразователь частоты состоит из схем, в состав которых входит тиристор или транзистор , которые работают в режиме электронных ключей. В основе управляющей части находится микропроцессор , который обеспечивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита).
В зависимости от структуры и принципа работы электрического привода выделяют два класса преобразователей частоты:
Каждый из существующих классов преобразователей имеет свои достоинства и недостатки, которые определяют область рационального применения каждого из них.
В преобразователях с непосредственной связью электрический модуль представляет собой управляемый выпрямитель. Система управления поочерёдно отпирает группы тиристоров и подключает обмотки двигателя к питающей сети.
Таким образом, выходное напряжение преобразователя формируется из «вырезанных» участков синусоид входного напряжения. Частота выходного напряжения у таких преобразователей не может быть равна или выше частоты питающей сети. Она находится в диапазоне от 0 до 50 Гц, и как следствие — малый диапазон управления частотой вращения двигателя (не более 1 : 10). Это ограничение не позволяет применять такие преобразователи в современных частотно регулируемых приводах с широким диапазоном регулирования технологических параметров.
Использование незапираемых тиристоров требует относительно сложных систем управления, которые увеличивают стоимость преобразователя. «Резаная» синусоида на выходе преобразователя с непосредственной связью является источником высших гармоник, которые вызывают дополнительные потери в электрическом двигателе, перегрев электрической машины, снижение момента, очень сильные помехи в питающей сети. Применение компенсирующих устройств приводит к повышению стоимости, массы, габаритов, понижению КПД системы в целом.
Наиболее широкое применение в современных частотно регулируемых модулях находят преобразователи с явно выраженным промежуточным звеном постоянного тока . В преобразователях этого класса используется двойное преобразование электрической энергии: входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в выпрямителе, фильтруется фильтром, сглаживается, а затем вновь преобразуется инвертором в переменное напряжение изменяемой частоты и амплитуды. Двойное преобразование энергии приводит к снижению КПД и к некоторому ухудшению массо-габаритных показателей по отношению к преобразователям с непосредственной связью. Непременное наличие силовых электролитических конденсаторов ставит непреодолимое ограничение на расчётный срок службы преобразователя: при полной нагрузке это обычно порядка 3000 часов.
Для формирования синусоидального переменного напряжения используют автономный инвертор , который формирует электрическое напряжение заданной формы на обмотках электродвигателя (как правило, методом широтно-импульсной модуляции ). В качестве электронных ключей в инверторах применяются запираемые тиристоры (GTO) и их усовершенствованные модификации GCT, IGCT, SGCT, и биполярные транзисторы с изолированным затвором IGBT .
Главным достоинством тиристорных преобразователей частоты, как и в схеме с непосредственной связью, является способность работать с большими токами и напряжениями, выдерживая при этом продолжительную нагрузку и импульсные воздействия. Они имеют более высокий КПД (до 88 %) по отношению к преобразователям на IGBT-транзисторах [ источник не указан 1815 дней ] .
Преобразователи частоты являются нелинейной нагрузкой, создающей токи высших гармоник в питающей сети, что приводит к ухудшению качества электроэнергии.