Метод дыхания
- 1 year ago
- 0
- 0
Метод схемных определителей — это символьный метод анализа электрических цепей, в котором для расчёта искомых токов и напряжений используется непосредственно схема замещения цепи с произвольными линейными элементами, минуя составление уравнений равновесия. Метод предназначен для получения оптимальных по сложности символьных выражений схемных функций, откликов, погрешностей преобразования и допусков элементов, а также параметров макромоделей подсхем и параметров неизвестных элементов в линейных электрических цепях.
В основе метода схемных определителей лежат формулы Фойснера для выделения параметров двухполюсных элементов , которые могут быть представлены в схемно-алгебраической форме :
В общем случае произвольный параметр может быть выделен с помощью следующего выражения:
где χ є (R, g, K, G, H, B); Δ(χ→∞) — определитель первой производной схемы, полученной из исходной схемы в результате присвоения параметру χ значения, стремящегося к бесконечности (сопротивление удаляется, проводимость заменяется на схеме идеальным проводником (стягивается), управляемые источники заменяются на нуллоры) ; Δ(χ=0) — определитель второй производной схемы, которая образована в результате нейтрализации выделяемого элемента, то есть принятия χ=0 (сопротивление стягивается, проводимость удаляется, управляемые источники нейтрализуется). В качестве определителей будем рассматривать символьные определители, то есть аналитические выражения, в которых все параметры схемы представлены символами, а не числами . Нуллором называют схемную модель идеального усилителя Теллегена , то есть управляемый источник, параметр которого стремится к бесконечности. Нуллор является аномальным управляемым источником, поскольку ток и напряжение норатора (управляемой ветви нуллора) не определены, а ток и напряжение нуллатора (управляющей ветви нуллора) равны нулю. При замещении управляемого источника его управляемая и управляющая ветвь заменяются на норатор и нуллатор соответственно. При нейтрализации управляемая ветвь напряжения и ветвь управляющего тока стягиваются, а управляемая ветвь тока и ветвь управляющего напряжения удаляются. Идеальный проводник и разомкнутая ветвь являются частными случаями включения нуллора. Идеальный проводник эквивалентен однонаправленному параллельному соединению норатора и нуллатора, а разомкнутая ветвь — их встречному последовательному соединению. При изменении направления норатора или нуллатора знак определителя схемы, содержащей эти элементы, изменяется на противоположный. Если конденсаторы задать в операторном виде ёмкостными проводимостями рС, а индуктивности — индуктивными сопротивлениями pL, то результатом разложения символьного определителя схемы по формулам (1)-(3) становится выражение, не содержащее дробей, что делает его простым и удобным в рассмотрении. Схемные элементы по формуле (3) выделяются рекурсивно до тех пор, пока не будет получена простейшая схема, определитель которой выводится из закона Ома (например, разомкнутые сопротивление или проводимость (рис. 1,а и б), замкнутые на себя сопротивление или проводимость (рис. 1,в и г), два несоединенных узла (рис. 1,д), одиночный узел (рис. 1,е), контур с нуллором (рис. 1,ж), разомкнутая ветвь с норатором и нуллатором (рис. 1,з), контур с УИ (рис. 1,и-м)).
К описанному базису простейших схем целесообразно также добавить схемы на рис. 1,н и рис. 1,о, состоящие из двух контуров с ИНУН или ИТУТ соответственно, так как нейтрализация одного из УИ приводит к получению схемы-узла. Аналогичным свойством обладают обобщения этих схем, которые состоят из m контуров с УИ (m>2) и имеют определители Δ=K 1 • K 2 • … • K m +1 и Δ=B 1 • B 2 • … • B m +1 соответственно.
В системном определителе (матрице) схемы возможно появление строк, которые состоят из элементов, равных нулю. Соответствующая этому определителю схема называется вырожденной. Таким образом, определитель вырожденной схемы тождественно равен нулю. С физической точки зрения принимается, что вырожденной является схема, в которой развиваются бесконечно большие токи и напряжения или значения токов и напряжений оказываются неопределёнными . Так, внутренние сопротивления управляемой ветви напряжения и ветви управляющего тока равны нулю, поэтому в контуре, содержащем только управляемые ветви напряжения и ветви управляющих токов, создаётся бесконечно большой ток. С другой стороны, внутренние проводимости управляемой ветви тока и ветви управляющего напряжения равны нулю, поэтому на элементах сечения, образованного только управляемыми ветвями тока и ветвями управляющих напряжений, появляются бесконечно большие значения напряжений. Метод схемных определителей предоставляет возможность устанавливать вырожденность схемы непосредственно по её структуре и составу элементов во избежание излишних выкладок . Ниже приведены условия вырождения схемы и нейтрализации элементов при замыкании и размыкании ветвей (табл. 1) и в контурах и сечениях (табл. 2).
Элемент схемы | Петля | Разомкнутая ветвь |
---|---|---|
Сопротивление | Выделение | Нейтрализация |
Проводимость | Нейтрализация | Выделение |
Управляемая ветвь напряжения | Вырождение | Нейтрализация |
Ветвь управляющего тока | Вырождение | Нейтрализация |
Управляемая ветвь тока | Нейтрализация | Вырождение |
Ветвь управляющего напряжения | Нейтрализация | Вырождение |
Норатор | Вырождение | Вырождение |
Нуллатор | Вырождение | Вырождение |
Элемент схемы | Инцидентность элемента | |||
контуру | сечению | |||
из управляемой ветви напряжения или норатора | из ветви управляющего тока или нуллатора | из управляемой ветви тока или норатора | из ветви управляющего напряжения или нуллатора | |
Сопротивление | − | Стягивание | ||
Проводимость | Удаление | − | ||
Управляемая ветвь напряжения | Вырождение | − | Стягивание | − |
Ветвь управляющего тока | − | Вырождение | − | Стягивание |
Управляемая ветвь тока | Удаление | − | Вырождение | − |
Ветвь управляющего напряжения | − | Удаление | − | Вырождение |
Норатор | − | Вырождение | − | Вырождение |
Нуллатор | Вырождение | − | Вырождение | − |
Любая схемная функция электрической цепи может рассматриваться как отношение N/D . Числитель N здесь является определителем схемы, в которой независимый источник и ветвь искомого отклика замещаются нуллором, а знаменатель D — определителем схемы с нейтрализованными входом и выходом. На рис. 2 эти правила проиллюстрированы схемно-алгебраическими формулами для шести известных схемных функций: коэффициента передачи по напряжению (рис. 2,а), передаточного сопротивления (рис. 2,б), передаточной проводимости (рис. 2,в), коэффициента передачи по току (рис. 2,г), входных проводимости (рис. 2,д) и сопротивления (рис. 2,е) соответственно .
При наличии в цепи нескольких независимых источников для применения аппарата схемных определителей следует использовать метод наложения .
В схемах, содержащих более одного направленного нуллора, они должны быть пронумерованы таким образом, чтобы нораторы и нуллаторы, относящиеся к одному нуллору, имели одинаковые номера:
При формулировке данного правила ориентация нораторов и нуллаторов не меняется (то есть они направлены вверх).
Метод схемных определителей используется для решения различных задач теории цепей: