Объект исследования
- 1 year ago
- 0
- 0
В статистике выборка исследования описывает процесс отбора выборки элементов из целевой совокупности для проведения исследования. Термин « исследование » может относиться ко многим различным типам или методам наблюдения. При выборочном исследовании чаще всего используется опросник, используемый для измерения характеристик и/или отношения людей. Различные способы связи с членами выборки после того, как они были отобраны, являются предметом . Целью выборки является сокращение затрат и/или объема работы, которые потребуются для обследования всего изучаемого населения. Исследование, которое измеряет все целевое население, называется переписью . Выборка относится к группе или части совокупности , от которой должна быть получена информация.
Выборки исследований можно условно разделить на два типа: вероятностные выборки и супервыборки. Выборки, основанные на вероятностях, реализуют план выборки с заданными вероятностями (возможно, адаптированными вероятностями, заданными адаптивной процедурой). Выборка на основе вероятностей позволяет делать выводы о целевой совокупности на основе дизайна. Выводы основаны на известном объективном распределении вероятностей , указанном в протоколе исследования. Выводы, сделанные на основе вероятностных исследований, могут по-прежнему страдать от многих типов систематических ошибок.
Исследования, которые не основаны на вероятностной выборке, имеют большие трудности с измерением систематической ошибки или . Исследования, основанные на невероятностных выборках, часто могут не включать группу лиц из целевой совокупности .
В академических и государственных исследованиях вероятностная выборка является стандартной процедурой. В Соединенных Штатах в «Списке стандартов для статистических исследований» Административно-бюджетного управления говорится, что исследования, финансируемые из федерального бюджета, должны проводиться следующим образом:
«...отбор выборок с использованием общепринятых статистических методов (например, вероятностных методов, которые могут обеспечить оценку ошибки выборки). Любое использование невероятностных методов выборки (например, отсечки или выборки на основе моделей) должно быть статистически обосновано и иметь возможность измерять ошибку оценки» .
Случайная выборка и вывод на основе плана дополняются другими статистическими методами, такими как выборка с помощью моделей и выборка на основе моделей .
Например, многие исследования имеют значительное количество отсутствующих ответов. Несмотря на то что единицы изначально выбираются с известными вероятностями, механизмы отсутствия ответа неизвестны. Для исследований со значительным отсутствием ответов статистики предложили статистические модели, с помощью которых анализируются наборы данных.
Вопросы, связанные с выборкой исследования, обсуждаются в нескольких источниках, включая публикацию Салант и Диллмана (1994) .
В вероятностной выборке (также называемой «научной» или «случайной» выборкой) каждый член целевой совокупности имеет известную и ненулевую вероятность включения в выборку . Опрос, основанный на вероятностной выборке, теоретически может дать следующие статистические измерения целевой совокупности:
Выборка исследования, основанная на вероятности, создается путем составления списка целевой совокупности, называемого , рандомизированного процесса выбора единиц из основы выборки, называемого процедурой отбора, и метода установления контакта с выбранными единицами, чтобы они могли заполнить опрос, называемый методом или режимом сбора данных . Для некоторых целевых групп этот процесс может быть простым, например выборка сотрудников компании с использованием списков заработной платы. Однако в больших неорганизованных популяциях простое построение подходящей основы выборки часто является сложной и дорогостоящей задачей.
Распространенными методами проведения вероятностной выборки населения домохозяйств в Соединенных Штатах являются вероятностная выборка по району, телефонная выборка со случайным набором цифр и в последнее время выборка на основе адреса .
В рамках вероятностной выборки существуют специальные методы, такие как стратифицированная выборка и , которые повышают точность или эффективность процесса выборки без изменения основных принципов вероятностной выборки.
Стратификация — это процесс деления членов совокупности на однородные подгруппы перед выборкой на основе вспомогательной информации о каждой единице выборки. Страты должны быть взаимоисключающими: каждый элемент совокупности должен быть отнесен только к одной страте. Слои также должны быть исчерпывающими в совокупности: ни один элемент совокупности не может быть исключен. Затем в каждой страте могут применяться такие методы, как или . Стратификация часто повышает репрезентативность выборки за счет уменьшения ошибки выборки.
Систематическая ошибка в опросах нежелательна, но часто неизбежна. Основные типы ошибок, которые могут возникнуть в процессе выборки, следующие.
Многие исследования основаны не на вероятностных выборках, а скорее на поиске подходящей группы респондентов для заполнения опроса. Вот некоторые распространенные примеры невероятностной выборки .
В невероятностных выборках взаимосвязь между целевой совокупностью и выборкой исследования неизмерима, а потенциальные систематические ошибки неизвестны. Опытные пользователи невероятностных выборок исследования склонны рассматривать опрос как экспериментальное условие, а не как инструмент для измерения населения, и проверяют результаты на наличие внутренне непротиворечивых взаимосвязей.
Учебник Гроувса и соавторов содержит обзор методологии опроса, включая недавнюю литературу по разработке опросников (на основе когнитивной психологии ):
Другие книги сосредоточены на статистической теории выборки обследований и требуют некоторых знаний по базовой статистике, как описано в следующих учебниках:
В базовой книге Шеффера и соавторов используются квадратные уравнения из школьной алгебры:
Для чтения Lohr, Särndal et alia и Cochran требуется больше математической статистики:
Исторически важные книги Деминга и Киша по-прежнему ценны для понимания социологами (особенно о переписи населения США и Мичиганского университета ):