Interested Article - Бесконечно малая и бесконечно большая

?????????? ????? ???????? ??????? ??? ?????????????????? , ?????? ??????? ????? ???? .

?????????? ??????? — ???????? ??????? ??? ??????????????????, ??????????? ? (?????? ??????? ?????) ????????????? ????????????? ?????.

? ????????????? ??????? ?????????? ????? ? ?????????? ??????? ???????????? ?? ??? ?????????????????? ? ?? ??? ?????????? ????????, ? ??? ?????? ??? ?????.

?????????? ?????????? ????? ? ???????

?????????? ?????????? ????? — ??????????, ???????????? ? ?????????? ?????? ??????????, ??? ??????? ??????????? ????????? ??????????????? ??? ??????????? ????? ?????????? ?????. ?????????? ?????????? ????? ??????? ???????? ????? ???????? ??? ???????????????? ? ???????????? ?????????? , ???????????? ?????? ??????????? ?????? ?????????? . ??????? ?????????? ????? ???????? ????? ??????? ? ???????? ???????.

?????????? ?????

?????????????????? a n {\displaystyle a_{n}} ?????????? ?????????? ????? , ???? lim n ? ? a n = 0 {\displaystyle \lim \limits _{n\to \infty }a_{n}=0} . ????????, ?????????????????? ????? a n = 1 n {\displaystyle a_{n}={\dfrac {1}{n}}} — ?????????? ?????.

??????? ?????????? ?????????? ????? ? ??????????? ????? x 0 {\displaystyle x_{0}} , ???? lim x ? x 0 f ( x ) = 0 {\displaystyle \lim \limits _{x\to x_{0}}f(x)=0} .

??????? ?????????? ?????????? ????? ?? ????????????? , ???? lim x ? + ? f ( x ) = 0 {\displaystyle \lim \limits _{x\to +\infty }f(x)=0} ???? lim x ? ? ? f ( x ) = 0 {\displaystyle \lim \limits _{x\to -\infty }f(x)=0} .

????? ?????????? ????? ???????? ???????, ?????????????? ????? ???????? ??????? ? ?? ???????, ?? ???? ???? lim x ? + ? f ( x ) = a {\displaystyle \lim \limits _{x\to +\infty }f(x)=a} , ?? f ( x ) ? a = ? ( x ) {\displaystyle f(x)-a=\alpha (x)} , lim x ? + ? ( f ( x ) ? a ) = 0 {\displaystyle \lim \limits _{x\to +\infty }(f(x)-a)=0} .

??????????, ??? ?????????? ????? ???????? ??????? ???????? ??? ?????????? ???????? (???????), ??????? ???? ? ???????? ?????? ????????? [??? ?????????? x {\displaystyle x} ? a {\displaystyle a} (?? lim x ? a f ( x ) = 0 {\displaystyle \lim \limits _{x\to a}f(x)=0} )] ???????? ?????? ????????????? ????? ( ? {\displaystyle \varepsilon } ). ???????, ????????, ??????????? ???? «???? ?????????? ???? ?????????? ????? ????????» ???????: ? ????? [?????????? ????????] ?? ????? ?????? ????????, ??? ??? ?????????? ????? .

?????????? ???????

?? ???? ??????????? ???? ???????? ????????????? ?????? ?? ????????? ??????????????? ????????????? ????? (???? «????», ???? «?????»). ?? ????, ????????, ??????? x sin ? x {\displaystyle x\sin x} , ?????????????? ? ????? ??????, ?? ???????? ?????????? ??????? ??? x ? + ? {\displaystyle x\to +\infty } .

?????????????????? a n {\displaystyle a_{n}} ?????????? ?????????? ??????? , ???? lim n ? ? a n = ? {\displaystyle \lim \limits _{n\to \infty }a_{n}=\infty } .

??????? ?????????? ?????????? ??????? ? ??????????? ????? x 0 {\displaystyle x_{0}} , ???? lim x ? x 0 f ( x ) = ? {\displaystyle \lim \limits _{x\to x_{0}}f(x)=\infty } .

??????? ?????????? ?????????? ??????? ?? ????????????? , ???? lim x ? + ? f ( x ) = ? {\displaystyle \lim \limits _{x\to +\infty }f(x)=\infty } ???? lim x ? ? ? f ( x ) = ? {\displaystyle \lim \limits _{x\to -\infty }f(x)=\infty } .

??? ? ? ?????? ?????????? ?????, ?????????? ????????, ??? ?? ???? ???????? ?????? ???????? ?????????? ??????? ???????? ?? ????? ???? ??????? ??? «?????????? ???????» — ?????????? ??????? ???????? — ??? ??????? , ??????? ???? ? ???????? ?????? ????????? ????? ????? ?????? ??????????? ??????? ?????.

???????? ?????????? ?????

  • ?????????????? ????? ????????? ????? ?????????? ????? ??????? ???? ?????????? ????? ???????.
  • ???????????? ?????????? ????? — ?????????? ?????.
  • ???????????? ?????????? ????? ?????????????????? ?? ???????????? — ?????????? ?????. ??? ?????????, ???????????? ?????????? ????? ?? ????????? — ?????????? ?????.
  • ???? a n {\displaystyle a_{n}} — ?????????? ????? ??????????????????, ??????????? ????, ?? b n = 1 a n {\displaystyle b_{n}={\dfrac {1}{a_{n}}}} — ?????????? ??????? ??????????????????.

????????? ?????????? ?????

???????????

????????, ? ??? ???? ?????????? ????? ??? ????? ? ??? ?? x ? a {\displaystyle x\to a} ???????? ? ( x ) {\displaystyle \alpha (x)} ? ? ( x ) {\displaystyle \beta (x)} (????, ??? ?? ????? ??? ???????????, ?????????? ????? ??????????????????).

  • ???? lim x ? a ? ? = 0 {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=0} , ?? ? {\displaystyle \beta } — ?????????? ????? ??????? ??????? ??????? , ??? ? {\displaystyle \alpha } . ?????????? ? = o ( ? ) {\displaystyle \beta =o(\alpha)} ??? ? ? ? {\displaystyle \beta \prec \alpha } .
  • ???? lim x ? a ? ? = ? {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=\infty } , ?? ? {\displaystyle \beta } — ?????????? ????? ??????? ??????? ??????? , ??? ? {\displaystyle \alpha } . ?????????????? ? = o ( ? ) {\displaystyle \alpha =o(\beta)} ??? ? ? ? {\displaystyle \alpha \prec \beta } .
  • ???? lim x ? a ? ? = c {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=c} (?????? ??????? ? ?? ????? 0), ?? ? {\displaystyle \alpha } ? ? {\displaystyle \beta } ???????? ?????????? ?????? ?????????? ?????? ??????? ??????? . ??? ???????????? ??? ? ? ? {\displaystyle \alpha \asymp \beta } ??? ??? ????????????? ?????????? ????????? ? = O ( ? ) {\displaystyle \beta =O(\alpha)} ? ? = O ( ? ) {\displaystyle \alpha =O(\beta)} . ??????? ????????, ??? ? ????????? ?????????? ????? ????????? ???????????, ????? ???????????? ???????? ?????????? ? ???? ?????? ?????? ????????? «? ???????», ??? ???????? ??????? ?????????????? ??????? ???????.
  • ???? lim x ? a ? ? m = c {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha ^{m}}}=c} (?????? ??????? ? ?? ????? 0), ?? ?????????? ????? ???????? ? {\displaystyle \beta } ????? m {\displaystyle m} -? ??????? ??????? ???????????? ?????????? ????? ? {\displaystyle \alpha } .

??? ?????????? ???????? ???????? ?????? ???????????? ??????? ???????? .

??????? ?????????

  • ??? x ? 0 {\displaystyle {x\to 0}} ???????? x 5 {\displaystyle x^{5}} ????? ?????? ??????? ??????? ???????????? x 3 {\displaystyle x^{3}} , ??? ??? lim x ? 0 x 5 x 3 = 0 {\displaystyle \lim \limits _{x\to 0}{\dfrac {x^{5}}{x^{3}}}=0} . ? ?????? ???????, x 3 {\displaystyle x^{3}} ????? ?????? ??????? ??????? ???????????? x 5 {\displaystyle x^{5}} , ??? ??? lim x ? 0 x 3 x 5 = ? {\displaystyle \lim \limits _{x\to 0}{\dfrac {x^{3}}{x^{5}}}=\infty } .
? ?????????????? ? -????????? ?????????? ?????????? ????? ???? ???????? ? ????????? ???? x 5 = o ( x 3 ) {\displaystyle x^{5}=o(x^{3})} .
  • lim x ? 0 2 x 2 + 6 x x = lim x ? 0 2 x + 6 1 = lim x ? 0 ( 2 x + 6 ) = 6 , {\displaystyle \lim \limits _{x\to 0}{\dfrac {2x^{2}+6x}{x}}=\lim \limits _{x\to 0}{\dfrac {2x+6}{1}}=\lim \limits _{x\to 0}(2x+6)=6,} ?? ???? ??? x ? 0 {\displaystyle x\to 0} ??????? f ( x ) = 2 x 2 + 6 x {\displaystyle f(x)=2x^{2}+6x} ? g ( x ) = x {\displaystyle g(x)=x} ???????? ?????????? ?????? ?????????? ?????? ???????.
? ?????? ?????? ??????????? ?????? 2 x 2 + 6 x = O ( x ) {\displaystyle 2x^{2}+6x=O(x)} ? x = O ( 2 x 2 + 6 x ) . {\displaystyle x=O(2x^{2}+6x).}
  • ??? x ? 0 {\displaystyle {x\to 0}} ?????????? ????? ???????? 2 x 3 {\displaystyle 2x^{3}} ????? ?????? ??????? ??????? ???????????? x {\displaystyle x} , ????????? lim x ? 0 2 x 3 x 3 = 2 {\displaystyle \lim \limits _{x\to 0}{\dfrac {2x^{3}}{x^{3}}}=2} , ?????????? ????? 0 , 7 x 2 {\displaystyle 0{,}7x^{2}} — ?????? ???????, ?????????? ????? x {\displaystyle {\sqrt {x}}} — ??????? 0,5.

????????????? ????????

???????????

???? lim x ? a ? ? = 1 {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=1} , ?? ?????????? ????? ??? ?????????? ??????? ???????? ? {\displaystyle \alpha } ? ? {\displaystyle \beta } ?????????? ?????????????? (???????????? ??? ? ? ? {\displaystyle \alpha \thicksim \beta } ).

????????, ??? ????????????? ???????? ???????? ??????? ??????? ?????????? ????? (?????????? ???????) ??????? ?????? ??????? ???????.

??? ? ( x ) ? x ? x 0 0 {\displaystyle \alpha (x){\xrightarrow[{x\to x_{0}}]{}}0} ??????????? ????????? ??????????? ??????????????? (??? ????????? ?? ??? ?????????? ????????????? ???????? ):

  • sin ? ? ( x ) ? ? ( x ) ; {\displaystyle \sin \alpha (x)\thicksim \alpha (x);}
  • t g ? ( x ) ? ? ( x ) ; {\displaystyle \mathrm {tg} \,\alpha (x)\thicksim \alpha (x);}
  • arcsin ? ? ( x ) ? ? ( x ) ; {\displaystyle \arcsin {\alpha (x)}\thicksim \alpha (x);}
  • ? 2 ? arccos ? ? ( x ) ? ? ( x ) {\displaystyle {\frac {\pi }{2}}-\arccos {\alpha (x)}\thicksim \alpha (x)}
  • a r c t g ? ( x ) ? ? ( x ) ; {\displaystyle \mathrm {arctg} \,\alpha (x)\thicksim \alpha (x);}
  • log a ? ( 1 + ? ( x ) ) ? ? ( x ) ? 1 ln ? a {\displaystyle \log _{a}(1+\alpha (x))\thicksim \alpha (x)\cdot {\frac {1}{\ln {a}}}} , ??? a > 0 {\displaystyle a>0} , a ? 1 {\displaystyle a\neq 1} ;
  • ln ? ( 1 + ? ( x ) ) ? ? ( x ) ; {\displaystyle \ln(1+\alpha (x))\thicksim \alpha (x);}
  • a ? ( x ) ? 1 ? ? ( x ) ? ln ? a {\displaystyle a^{\alpha (x)}-1\thicksim \alpha (x)\cdot \ln {a}} , ??? a > 0 {\displaystyle a>0} ;
  • e ? ( x ) ? 1 ? ? ( x ) ; {\displaystyle e^{\alpha (x)}-1\thicksim \alpha (x);}
  • 1 ? cos ? ? ( x ) ? ? 2 ( x ) 2 ; {\displaystyle 1-\cos {\alpha (x)}\thicksim {\frac {\alpha ^{2}(x)}{2}};}
  • ( 1 + ? ( x ) ) ? ? 1 ? ? ? ? ( x ) , ? ? R {\displaystyle (1+\alpha (x))^{\mu }-1\thicksim \mu \cdot \alpha (x),\quad \mu \in \mathbb {R} } , ??????? ?????????? ?????????:
1 + ? ( x ) n ? ? ( x ) n + 1 {\displaystyle {\sqrt[{n}]{1+\alpha (x)}}\approx {\frac {\alpha (x)}{n}}+1} , ??? ? ( x ) ? x ? x 0 0 {\displaystyle \alpha (x){\xrightarrow[{x\to x_{0}}]{}}0} .

???????

?????? ???????? (?????????) ???? ?????????? ????? ??? ?????????? ??????? ??????? ?? ?????????, ???? ???? ?? ??? (??? ???) ???????? ????????????? ????????? .

?????? ??????? ????? ?????????? ???????? ??? ?????????? ???????? (??. ??????).

??????? ?????????????

  • ????? lim x ? 0 sin ? 2 x x . {\displaystyle \lim \limits _{x\to 0}{\dfrac {\sin 2x}{x}}.}
??????? sin ? 2 x {\displaystyle \sin 2x} ????????????? ????????? 2 x {\displaystyle 2x} , ????????
lim x ? 0 sin ? 2 x x = lim x ? 0 2 x x = 2. {\displaystyle \lim \limits _{x\to 0}{\dfrac {\sin 2x}{x}}=\lim \limits _{x\to 0}{\dfrac {2x}{x}}=2.}
  • ????? lim x ? ? 2 sin ? ( 4 cos ? x ) cos ? x . {\displaystyle \lim \limits _{x\to {\frac {\pi }{2}}}{\dfrac {\sin(4\cos x)}{\cos x}}.}
??? ??? sin ? ( 4 cos ? x ) ? 4 cos ? x {\displaystyle \sin(4\cos x)\thicksim {4\cos x}} ??? x ? ? 2 {\displaystyle x\to {\dfrac {\pi }{2}}} ???????
lim x ? ? 2 sin ? ( 4 cos ? x ) cos ? x = lim x ? ? 2 4 cos ? x cos ? x = 4. {\displaystyle \lim \limits _{x\to {\frac {\pi }{2}}}{\dfrac {\sin(4\cos x)}{\cos x}}=\lim \limits _{x\to {\frac {\pi }{2}}}{\dfrac {4\cos x}{\cos x}}=4.}
  • ????????? 1 , 2 {\displaystyle {\sqrt {1{,}2}}} .
: 1 , 2 ? 1 + 0 , 2 2 = 1 , 1 {\displaystyle {\sqrt {1{,}2}}\approx 1+{\frac {0{,}2}{2}}=1{,}1} , ????? ???, ????????? ??????????? (????? ?????? ??????????), ????????: 1 , 2 ? 1,095 {\displaystyle {\sqrt {1{,}2}}\approx 1{,}095} , ????? ??????? ?????? ????????? 0,005 (????? 1 %), ?? ???? ????? ???????, ????????? ????? ????????, ??? ?????? ?????? ?????????????? ?????? ??????? ? ???????.

???????

??????? «?????????? ?????» ??????????? ??? ? ???????? ??????? ? ????? ? ?????????? ????????? ??????, ?????? ? ???????????? ?????????? ?? ?????. ????? ??? ??????????? ? ?????????? ? XVI ???? «?????? ?????????» — ????????? ??????????? ?????? ?? ?????????? ????? ???????.

? XVII ???? ????????? ????????????? ?????????? ?????????? ?????. ??? ????? ???????????? ??? ???????? ????????, ??????? ?????? ?????? ???????? (?????????????) ???????? ? ??? ?? ?? ????? ????. ????????? ??????? ??????????? ? ??????????? ???????????, ??????????? ?????????? ????? ( ????????????? ), ? ????? — ? ??? ?????????????? .

?????????? ?????? ????? ????????? ????????? ?????????? ????? ?????? ???????. ?????? ????? ?????, ??? ????? ?????????? ???? « ????? ?????????? ?????? »; ??????? ??????? ???????, ??? ??? ?????????? ???????????? ????? ????????? ????????? ? ????? ???????? ????, ????????????? ??????? ?? ????? ???? ????????. ???? ??????? ???????????, ??? ?? ???????? ?????? ?????????????? ?????? ???????? .

????? ? ????????? ???????? ???? ?? ???????? ??????????? ??????? ????????? ????????? ??????????? ????????, ??? ???????? ??????? ?????? ????????? ????? ?????? ????????????? ?? ??? ???? (? ???????? ??? ???????? ????? ? ?????????). ? 1706 ???? ????? ???????? ???? ???? ??????????, ?????? ????????? ????????????.

? 1734 ???? ????????? ?????????? ???????, ??????? ?????? ?????? ???????? ?????????? ???????, ????????? ??? ??????????? ????????? « ». ?????? ??? ????????: « ???????? ??? ???????????, ?????????? ? ??????????? ??????????, ??? ???????????, ????? ?? ???? ?????????????? ??? ????? ?? ???????? ????????? ???????, ???????? ? ????????????? ???????????? ???????, ??? ??????????? ???????? ? ??????? ???? ». «????????» ???????? ?????????? ? ?? ?????? ???????????? ??????? ?????????? ?????????? ?????. ????? ??????? ?????? ?????? ??????????? ? ??????? ? ?????, ???, « ??? ?? ?? ?? ??? ???????, ??? ????? ????????????? ?????? ??? ????? ???????; ?????? ????????, ????????? ??? ?????? ?????????, ?? ?? ??? ????? ???????? ?????????????? ». ??????? ????? ??????? ? ?????????? ??????? ??????? «? ????? ?????? ?? ?????????? ??? ????????????», ?????? ???????????: « ??? ?? ???????? ????????, ?? ?????????? ?????, ?? ???? ?????. ?? ????? ?? ?? ?? ?? ??????? ?????????? ???????? ????????.. ? ??? ?????? ????? ???????? ?? ????????? ????? ??????, ?? ???????? ?????????.. ???, ??? ????? ?????????? ?????? ??? ?????? ??????? [???????????], ?????? ??? ?????? ????????, ?? ??????, ??? ??? ???????, ??????????? ? ????-???? ? ?????????? ».

??????????, ????? ??????, ??????????? ???? ?????????? ????????, ?? ???? ???????? ? ?????? ????????? ? ? ?????? ?????, ??? ??????? ???????? ???????? ??????? ? (???????? ?????????) ???????????? ? ???????.

??? ?? ? ??????? ??????? ?????????? ?????????? ??????????? ?????? ?????? ? ?????, ??? ??? ??????????? ???????? ? ????????????? ??????? ????????????????? ?????????? ??????, ? ???????????????? ??? ?? ??????? ????????. ??? ?? ???????, ????????? ??????? ?????????? (????????, ??????? ) ??????????? ? ???.

????????? ?????????????? ????????, ????? ????????? ? ?????????????? ? ?????????? ?????? ???? ??????. ???????? ?? ????????????? ?????????? ???????? ? ????? ????????????? ?????????, ????? ?????? ?????? ???? ?? ????????? ????? — ???????? ????????. ? ??? ?? ???? XVIII ??? ?????????????? ?????? ????? ??????????, ?? ???? ?? ???????? ???????? ???????????. ????????????? ??? ???? ???????????? ? ???????? ???? ?? ????, ?? ????? ????????????? ??-???????? ??? ??????. ???????? ????? ?????? ?????????? ????? ?????????? ??????? ? ??? ???????? ?????.

? ??????? ????? XVIII ???? ??????????????? ??????????? ?????? ??? ??????????? ?????????, ?????? ? ??? ??????????? ?????? ?????????? ????????, ?????? ??????????? ????????? ????????? ??????? ??????? ?????? ???? ? ?????? XIX ????. ?? ?????? ????????? ??????? ??????? — ??????, ??????????, ?????????????, ???????????? ? ??., ????? ???? ?????????? ?????????? ????? ??????? ?? ?????. ????????? ?????????? ???????? ????????? ??????? ??????????? . ? ????????? ????? ?????? «?????????? ?????» ?????????? ? ??????????? ??????????? ??????? ??????? ?? ? ??????, ? ? ???????? ? ??????????????????? .

??? ?????? ?????? ????? ????????????? ????????? ? ???????? XX ???? ?????????????? ??????? , ??????? ???????, ??? ?????????????? ????? ?????? — ?????????? ?????????? ????? — ????? ??????????????? ? ????? ?? ???? ???????? ? ?????? ???????. ? ?????????? ?????????????? ??????? ????? ????, ?????? ?????????? XVIII ????, ???????? ?????????? ? ????? ?????? ???????????? ?????? ????????, ??? ?? ????? ???????? ?????? ??????????.

??. ?????

??????????

  1. ?????????? ????? ? ?????????? ??????? ???????? // ?????????? ?? ?????????? (??? ??. ??. ?????????)/ ?????? ?. ?., ??? ???. ????????? ?. ?. — 3-? ???. — ?.: ?????, ??. ???????? ???.-???. ??????????, 1983. — ?. 337—340. — 480 ?.

??????????

Same as Бесконечно малая и бесконечно большая