Метонов цикл
- 1 year ago
- 0
- 0
Ксантофилловый цикл , или виолаксантиновый цикл , в случае высших растений, выполняет функцию защиты фотосинтетического аппарата от избытка энергии при повышенной инсоляции. Он позволяет избежать фотоингибирования, значительно увеличив нефотохимическое тушение . Цикл включает в себя ферментативные взаимопревращения между виолаксантином и зеаксантином (промежуточный продукт — ) .
Виолаксантиновый цикл протекает в минорных субъединицах светособирающего комплекса фотосистемы II (белки CP29, CP26, CP23, CP22 и др.). При высокой интенсивности света вследствие активной работы ЭТЦ фотосинтеза происходит закисление люмена тилакоидов . При падении pH до 5,0 активируются фермент деэпоксидаза, которая с люменальной стороны мембраны осуществляет восстановление эпоксидных групп виолоксантина, используя в качестве восстановителя аскорбиновую кислоту . Двукратное восстановление приводит к образованию зеаксантина, который и выполняет фотопротекторную функцию. При снижении интенсивности освещения, начинает преобладать обратная реакция катализируемая эпоксидазой, расположенной со стромальной стороны мембраны с pH оптимумом 7,5. Для введения эпоксидных групп необходим молекулярный кислород и восстановитель ( НАДФН ). В результате образуется виолаксантин, который может выполнять роль светособирающего пигмента .
Ксантофиловый цикл высших растений и водорослей играет важную роль в регуляции перераспределения энергии света между виолаксантином , зеаксантином и хлорофиллом а . Роль фотопротектора в цикле выполняет зеаксантин, содержащий сопряжённую систему из 11 двойных связей (у виолоксантина всего 9 сопряженных связей). Увеличение сопряжения приводит к снижению энергии первого синглетного возбужденного уровня пигмента. Для виолоксантина характерно поглощение при 657 нм, а для зеаксантина при 704 нм (поглощение хлорофилла при 680 нм). Таким образом, поскольку энергия возбужденного состояния зеаксантина ниже энергии возбужденного состояния хлорофилла а, возможен прямой синглет-синглетный перенос энергии от возбуждённого хлорофилла (S 1 ) к зеаксантину. Поглощение избыточной энергии возбуждения хлорофилла зеаксантином защищает фотосинтетический аппарат. С другой стороны энергия возбуждённого S 1 -состояния молекулы виолоксантина выше чем у хлорофилла а, и поэтому виолоксантин может стать донором энергии для хлорофилла. В результате виолоксантин играет роль антенны , собирающей фотоны и переносящей их на хлорофилл.
Таким образом, при низком освещении ксантофиллы действуют преимущественно как светособирающие пигменты, а при высоком помогают рассеять избыточную энергию и защитить растение от фотоингибирования. Этот же механизм помогает подготовить растение к смене дня и ночи.
Длинные молекулы каротиноидов с большим количеством сопряжённых связей особенно эффективно преобразуют энергию возбуждения в тепловую через внутреннюю конверсию . Благодаря большому количеству сопряжённых двойных связей, которые могут достаточно значительно изменять свою длину, молекулы каротиноидов совершают постоянные колебания сжимания разжимания наподобие гармошки. Такое поведение обеспечивает быструю диссипацию энергии в тепло . Это же свойство позволяет ксантофиллам и каротиноидам эффективно тушить активные , синглетные формы кислорода и возбуждённого, триплетного хлорофилла .
Кроме того, конформационные изменения в молекуле виолоксантина протекающие при деэпоксидации приводят к тому, что зеаксантин легче образует агрегаты. Образование агрегатов зеаксантина в минорных белках ССК II приводит к блокированию миграции энергии от внешних антенн ССКII к реакционному центру ФСII и тепловой диссипации энергии возбуждения. Известно, что при ярком солнечном освещении растения рассеивают в форме тепла от 50 до 70 % энергии поглощённых квантов . Поэтому именно тепловая диссипация энергии играет ключевую роль в защите фотосинтетического аппарата (считается, что вклад реакции Мелера и фотодыхания значительно меньше) .
При исследовании шпината было обнаружено, что при ярком освещении увеличение концентрации зеаксантина превосходит снижение концентрации виолоксантина. Возможно, такие условия побуждают растения к более активному синтезу зеаксантина из β-каротина .
Также зеаксантин выполняет важную структурную роль в мембранах тилакоидов. При повышенном освещении ксантофиллы распределяются между светособирающими комплексами и липидным бислоем . Поскольку зеаксантин имеет две гидрофильные -OH группы, он располагается поперек бислоя, тем самым увеличивая вязкость мембраны. Увеличение вязкости мембраны благодаря зеаксантину и некоторым терпеноидам ( α-токоферол ) снижает её проницаемость для кислорода и защищает липиды от перекисного окисления его активными формами .
У диатомовых водорослей и динофлагеллят ксантофиловый цикл состоит из пигмента диадиноксантина , который в условиях избыточного освещения превращается в диатоксантин у диатомовых или диноксантин у динофлагеллят .
У некоторых высших растений (например из рода Инга ) кроме виолаксантинового цикла обнаружен дополнительный лютеиновый цикл. В ходе этого цикла происходит обратимое превращения лютеин-5,6-эпоксида на ярком свету в лютеин , что также по-видимому способствует защите фотосинтетического аппарата . Этот цикл есть у некоторых таксономически далеко отстоящих групп, но он консервативен и сохраняется в пределах семейства и рода.