Interested Article - Сумма Минковского

Сумма Минковского синей и зелёной фигуры равна красной фигуре

Суммой Минковского двух подмножеств A и B линейного пространства V (или произвольной группы ) называется множество C , состоящее из сумм всевозможных векторов из A и B :

Аналогично определяется произведение множества на число:

Свойства

  • Если множество A выпукло, то
для любых и .

О разности Минковского

Множества с введенной на них суммой Минковского не образуют линейного пространства (даже выпуклые). Это связано с отсутствием обратного элемента (элемент - A , очевидно, таковым не является).

  • Разностью Минковского множеств A и B называется максимальное множество C такое, что
    ,
но легко видеть, что для многих множеств (например, квадрата и круга) разность Минковского не является операцией, обратной к сумме.
  • Альтернативно можно продолжить сумму Минковского на линейное пространство пар выпуклых множеств ( A , B ) с отношением эквивалентности

Разность Минковского также называют геометрической разностью множеств .

Вариации и обобщения

Литература

Источник —

Same as Сумма Минковского