Interested Article - Атом (теория меры)

В теории меры , атом — это измеримое множество положительной меры, которое не содержит в себе подмножества меньшей положительной меры. Мера, не имеющая атомов, называется безатомной .

Определение

Если есть измеримое пространство и мера на этом пространстве, то множество из называется атомом , если

и для любого измеримого подмножества множества из

следует, что

Примеры

Безатомные меры

Мера, не содержащая атомов, называется безатомной . Другими словами, мера является безатомной, если для любого измеримого множества с существует такое измеримое подмножество B множества A , что

Безатомная мера с хотя бы одним положительным значением имеет бесконечное количество различных значений, т.к. начиная с множества A с мерой можно построить бесконечную последовательность измеримых множеств

такую, что

Это может быть неверно для мер с атомами (см. пример выше).

На самом деле оказывается, что безатомные меры имеют континуум значений. Можно доказать, что если μ является безатомной мерой, а A — это измеримое множество с то для любого действительного числа b , удовлетворяющего условию

существует измеримое подмножество B множества A , такое, что

Эта теорема была доказана Вацлавом Серпинским . Она напоминает теорему о промежуточном значении для непрерывных функций.

Набросок доказательства теоремы Серпинского для безатомных мер. Используем слегка более сильное утверждение: если есть безатомное измеримое пространство и , то существует функция , задающая однопараметрическое семейство измеримых множеств S(t), таких что для всех

Доказательство легко следует из леммы Цорна , применённой к множеству

упорядоченному по включению графиков. Далее стандартным образом показывается, что всякая цепь в имеет максимальный элемент, а любой максимальный элемент имеет область определения , что и доказывает утверждение.

См. также


Ссылки

  1. W. Sierpinski. от 15 мая 2011 на Wayback Machine . Fundamenta Mathematicae, 3:240-246, 1922.
  2. Fryszkowski, Andrzej. Fixed Point Theory for Decomposable Sets (Topological Fixed Point Theory and Its Applications) (англ.) . — Springer. — P. 39. — ISBN 1-4020-2498-3 .
  • Bruckner, Andrew M.; Bruckner, Judith B.; Thomson, Brian S. Real analysis (англ.) . — Upper Saddle River, N.J.: Prentice-Hall , 1997. — P. 108. — ISBN 0-13-458886-X .
Источник —

Same as Атом (теория меры)