Interested Article - Нечётное жадное разложение

Нечётное жадное разложение — метод построения египетских дробей , в которых все знаменатели нечётные.

Если рациональное число является суммой нечётных аликвотных дробей :

,

то число должно быть нечётным. Обратно, известно, что в случае нечётности числа любая дробь вида имеет разложение с нечётными знаменателями, в котором все знаменатели дробей различны. Например, такое разложение можно найти, заменив на , где — число вида для достаточно большого , а затем представив в виде суммы делителей .

Однако существует более простой жадный алгоритм , который успешно находит египетские дроби с нечётными знаменателями для всех чисел (с нечётным ), на которых он проверен: пусть — наименьшее нечётное число, не меньшее , включается дробь в разложение и процесс продолжается для остаточной дроби . Этот метод и называется нечётным жадным алгоритмом, а получаемое разложение называется нечётным жадным разложением.

Вопрос о том, завершится ли процесс разложения за конечное число шагов для любого числа с нечётным по состоянию на 2006 год оставался открытым .

Применение алгоритма к дроби с чётным знаменателем даёт бесконечное разложение. Например, последовательность Сильвестра можно рассматривать как результат работы нечётного жадного алгоритма для дроби .

Пример

Пусть x / y = 4/23.

23/4 = 5 ¾, следующее большее нечётное число равно 7. Таким образом, на первом шаге получаем разложение:

4/23 = 1/7 + 5/161.

161/5 = 32 1/5, следующее большее нечётное число равно 33. Таким образом, на следующем шаге получаем разложение:

4/23 = 1/7 + 1/33 + 4/5313.

5313/4 = 1328 1/4, следующее большее нечётное число равно 1329. Таким образом, на третьем шаге получаем разложение:

4/23 = 1/7 + 1/33 + 1/1329 + 1/2353659.

Поскольку на третьем шаге в числителе остаточной дроби получена единица, то процесс останавливается и в итоге получено конечное разложение.

Дроби с длинными разложениями

Нечётный жадный алгоритм может образовывать разложения, которые короче обычного жадного разложения и с меньшими знаменателями . Например,

где разложение слева получено жадным алгоритмом, а разложение справа получено нечётным жадным алгоритмом. Однако, как правило, результат разложения нечётным жадным алгоритмом длиннее и имеет большие знаменатели. Например , разложение нечётным жадным алгоритмом числа 3/179 даёт 19 членов, наибольший из которых примерно равен 1,415×10 439491 . Что интересно, числители дробей разложения при этом образуют последовательность целых чисел:

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1.

Аналогичные случаи происходят и с другими числами, такими как 5/5809 (пример найден независимо Брауном ( K. S. Brown ) и Бейли ( David Bailey )), и в этом случае разложение имеет 31 член. Хотя знаменатели этого разложения трудно вычислить ввиду их огромного размера, последовательность числителей можно найти относительно эффективно, если использовать модульную арифметику . В 1999 году описаны некоторые дополнительные примеры этого типа и приведены методы поиска дробей, дающих произвольно длинные разложения.

Примечания

  1. ;
  2. .
  3. .
  4. .
  5. .

Литература

Источник —

Same as Нечётное жадное разложение