Interested Article - Дедекинд, Рихард

Ю́лиус Вильге́льм Ри́хард Де́декинд ( нем. Julius Wilhelm Richard Dedekind ; 6 октября 1831 12 февраля 1916 ) — немецкий математик , известный работами по общей алгебре и основаниям вещественных чисел . Ученик Гаусса и Дирихле .

Член Берлинской (1880), иностранный член Римской и Французской (1910) академий наук. Получил докторские степени в университетах Осло, Цюриха и Брауншвейга.

Биография

Рихард Дедекинд был младшим ребёнком из 4 детей в семье Юлиуса Левина Ульриха Дедекинда — брауншвейгского профессора-юриста и деятеля высшего образования. Став взрослым, он никогда не называл себя Юлиус Вильгельм. Большую часть своей жизни Рихард провёл в Брауншвейге , здесь он родился, работал и умер. Его жизнь небогата событиями, если не считать математики.

В 1848 году Рихард поступил в Карловский коллегиум в Брауншвейге , директором которого был его отец. Здесь он изучает основы математики.

В 1850 году Дедекинд поступил в университет Георга-Августа в Гёттингене (Гёттингенский университет) , ведущий и старейший университет в Нижней Саксонии , слушает курс теории чисел , который читал профессор Мориц Штерн. Карл Фридрих Гаусс , работающий в Гёттингенском университете, к тому времени преподавал начальный курс, и Дедекинд стал его последним студентом. В числе его университетских друзей был Бернхард Риман .

В 1852 году в возрасте 21 года Дедекинд получил докторскую степень за работу над диссертацией по теории интегралов Эйлера . Как он отмечал позже, эта работа не раскрыла его таланта.

В то время центром математических исследований был Берлинский университет , поэтому Дедекинд переехал в Берлин и учился в университете 2 года вместе с Риманом. Затем он вернулся в Гёттинген и в должности приват-доцента преподавал курсы теории вероятности и геометрии.

В 1855 году умер Гаусс, и его кафедру занял Дирихле , общение с которым оказало огромное влияние на Дедекинда. Позже Дедекинд писал, что Дирихле сделал его «новым человеком». До конца жизни Дирихле (1859) они работали вместе и стали близкими друзьями.

Первое время Дедекинд изучал эллиптические и абелевы функции. Кроме того, он был первым в Гёттингене, кто преподавал теорию Галуа и ввёл в широкое употребление предложенное Галуа понятие поля .

В 1858 году Дедекинд начал преподавать в Техническом университете в Цюрихе . В 1859 году вместе с Риманом совершил поездку в Берлин, где встречался с Вейерштрассом , Куммером и другими видными математиками берлинской школы.

Надгробие Рихарда Дедекинда

Когда в 1862 году Collegium Carolinum был преобразован в Технический институт, известный сейчас как Брауншвейгский технический университет , Дедекинд возвращается в родной Брауншвейг, где проводит остаток своей жизни, преподавая в этом институте.

В 1871 году Дедекинд познакомился с Георгом Кантором . Знакомство перешло в долголетнюю дружбу и сотрудничество.

В 1894 году он ушёл на заслуженный отдых, но продолжал иногда читать лекции и публиковаться. Скончался 12 февраля 1916 года , похоронен на главном кладбище Брауншвейга.

Дедекинд никогда не был женат и проживал со своей незамужней сестрой Юлией.

Научная деятельность

В 1871 году Дедекинд, обобщив теорию многочленов и алгебраических чисел, вводит в математику абстрактные алгебраические структуры: кольца , идеалы и модули . Совместно с Кронекером он создаёт общую теорию делимости . Исследования Дедекинда были изданы в виде приложения к «Теории чисел» Дирихле. Ряд биографов полагает, что эта книга, изданная после смерти Дирихле, в действительности написана Дедекиндом . Уровень общности результатов, приложимых к самым разным областям математики, стимулировал дальнейшее развитие абстрактной алгебры, фундамент которой был завершён Эмми Нётер .

Дедекинд стал одним из первых сторонников канторовской теории множеств , и многие его работы стали наглядным примером применения новых методов. Новаторским стало и широкое применение Дедекиндом аксиоматического подхода к описанию новых (абстрактных) математических понятий. В 1888 году Дедекинд предложил первый вариант системы аксиом для системы натуральных чисел . Годом позже аналогичную (немного упрощённую) систему аксиом, со ссылкой на Дедекинда, предложил Пеано , чьё имя за ней и закрепилось. В начале XX века аксиоматический метод был окончательно принят школой Гильберта как основополагающий в математике.

Дедекинд, наряду с Вейерштрассом , создал обоснование теории вещественных чисел ( 1876 ). Если Вейерштрасс в качестве модели вещественного числа использовал его формальную десятичную запись, то Дедекинд предложил иной подход, основанный на так называемых «Дедекиндовых сечениях» множества рациональных чисел (Близкое по идее построение неявно присутствовало уже в «Началах» Евклида ). Современные курсы математического анализа излагают чаще всего теорию Дедекинда .

Дедекинд был редактором посмертных изданий избранных трудов Дирихле, Гаусса и Римана.

К 150-летию со дня рождения Дедекинда в ГДР была выпущена почтовая марка (1981, 25 пфеннигов).

Публикации

  • Stetigkeit und irrationale Zahlen . Vieweg, Braunschweig 1872, 2. Auflage 1892, auch ( ) (нем.)
  • Was sind und was sollen die Zahlen? 1. Auflage, Vieweg, Braunschweig 1888, , 10. Auflage Vieweg 1965, auch (нем.)
  • Dirichlet, Dedekind: Vorlesungen über Zahlentheorie. 2. Auflage, Vieweg, 1871 auf от 4 января 2016 на Wayback Machine (нем.)
  • от 9 августа 2017 на Wayback Machine (Hrsg. von Эмми Нётер , , Ойстин Оре ), Braunschweig, Vieweg, 3 Bände, 1930 bis 1932. (нем.)
  • Über die Theorie der ganzen algebraischen Zahlen , Braunschweig, Vieweg 1964 (Предисловие Ван дер Вардена ), das 11. Supplement von Dedekind zu Dirichlets Zahlentheorie, auch in , englische Ausgabe Theory of algebraic integers , Cambridge University Press 1996 (Übersetzer und Herausgeber ) (нем.)
  • Vorlesung über Differential- und Integralrechnung 1861/62. Vieweg 1985 (Mitschrift von Heinrich Bechtold, herausgegeben von Winfried Scharlau, Max-Albert Knus), ISBN 978-3-528-08902-3 (нем.)
  • Briefwechsel Cantor-Dedekind. Paris 1937 (Herausgeber Emmy Noether, ). (нем.)

См. также

Примечания

  1. (англ.) — 1997.
  2. Дедекинд Рихард Юлиус Вильгельм // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров . — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  3. Edwards, H. M. «Dedekind’s invention of ideals» Bull. London Math. Soc. 15, 1983, pp. 8-17.
  4. См., например: Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Том I. М.: Изд. ФИЗМАТЛИТ, 2001, 680 стр. ISBN 5-9221-0156-0 .

Литература

  • Колмогоров А. Н., Юшкевич А. П. (ред.) Математика XIX века. М.: Наука.
    • Том 1. Математическая логика. Алгебра. Теория чисел. Теория вероятностей. 1978.
    • Том 2 Геометрия. Теория аналитических функций. 1981.
  • Медведев Ф. А. Рихард Дедекинд // История и методология естественных наук. — М. : МГУ, 1970. — Вып. 9 . — С. 169—177. .

Ссылки

Источник —

Same as Дедекинд, Рихард