Логистическое уравнение
- 1 year ago
- 0
- 0
Уравнение Вейля — уравнение движения для безмассовой двухкомпонентной (описываемой двухкомпонентным спинором ) частицы со спином 1/2. Оно представляет собой частный случай уравнения Дирака для безмассовой частицы.
Уравнения Вейля имеют следующий вид:
где σ i — матрицы Паули .
Уравнения (1) и (2) получены Германом Вейлем (Hermann Weyl) в 1929 году и носят его имя. Вейль предположил, что уравнения (1) либо (2) может быть уравнением для безмассовой частицы со спином 1/2. Гипотеза Вейля была вскоре подвергнута критике Вольфгангом Паули на том основании, что уравнения (1) и (2) не инвариантны относительно пространственной инверсии («… эти волновые уравнения… не инвариантны относительно зеркального отображения (перемены правого на левое) и вследствие этого неприменимы к физическим объектам» ).
Об уравнениях Вейля вспомнили в 1957 году после экспериментального открытия в слабом взаимодействии . Лев Ландау , Ли Цзундао и Янг Чжэньнин и Абдус Салам предположили, что нейтрино описывается двухкомпонентным вейлевским спинором ( теория двухкомпонентного нейтрино ). Ландау основывался на гипотезе CP-инвариантности и предположил, что нейтрино является вейлевской частицей, поскольку уравнения Вейля инвариантны относительно CP-преобразования. Эксперимент подтвердил теорию двухкомпонентного нейтрино.
Аналогом уравнений Вейля для безмассовой частицы со спином 1 (фотона) являются уравнения Максвелла в форме Майорана .