Interested Article - Парадокс Клейна в графене

Графен
См. также: Портал:Физика

Парадо́кс Кле́йна в графе́не — прохождение любых потенциальных барьеров без обратного рассеяния под прямым углом. Эффект связан с тем, что спектр носителей тока в графене линейный и квазичастицы подчиняются уравнению Дирака для графена. Эффект предсказан теоретически в 2006 году для прямоугольного барьера.

Теория

Коэффициент прохождения (в зависимости от угла падения) через симметричный прямоугольный барьер (энергия частиц 0,04 эВ), при изменении ширины барьера от 25 нм до 150 нм в полярных координатах.

Квазичастицы в графене описываются двумерным гамильтонианом для безмассовых дираковских частиц

где — постоянная Планка деленная на 2 π, — Ферми скорость, — вектор оставленный из матриц Паули , — оператор набла . Пусть есть потенциальный барьер с высотой и шириной , а энергия налетающих частиц равна . Тогда из решения уравнения Дирака для областей слева барьера (индекс I), в самом барьере (II) и справа от барьера (III) запишутся в виде плоских волн как для свободных частиц :

где приняты следующие обозначения для углов , , и волновых векторов в I-ой и III-ей областях , , и во II-ой области под барьером , знаков следующих выражений и . Неизвестные коэффициенты , амплитуды отражённой и прошедшей волны соответственно находятся из непрерывности волновой функции на границах потенциала.

Для коэффициента прохождения как функции угла падения частицы получено следующее выражение

На рисунке справа показано как изменяется коэффициент прохождения в зависимости от ширины барьера. Показано, что максимальная прозрачность барьера наблюдается при нулевом угле всегда, а при некоторых углах возможны резонансы.

Примечания

  1. Katsnelson M. I. , et. al. «Chiral tunnelling and the Klein paradox in graphene» Nature Physics 2 , 620 (2006) doi : от 12 июля 2015 на Wayback Machine
  2. Castro Neto A. H. от 12 июля 2015 на Wayback Machine
Источник —

Same as Парадокс Клейна в графене