Точка Немо
- 1 year ago
- 0
- 0
Точка перегиба — точка плоской кривой , в которой её ориентированная кривизна меняет знак. Если кривая является графиком функции, то в этой точке выпуклая часть функции отделяется от вогнутой (то есть вторая производная функции меняет знак).
Точка (простого) перегиба регулярной кривой — это такая точка этой кривой, в которой касательная к кривой имеет с ней соприкосновение второго порядка и разбивает кривую , то есть точки кривой, лежащие в некоторой окрестности данной точки по разные стороны от этой точки, лежат также по разные стороны от касательной . Если кривая 2-регулярна, то условие заменяется на следующее: ориентированная кривизна кривой при переходе через точку перегиба изменяет знак. Точкой высшего (вырожденного) перегиба кривой называется такая её точка, касательная к кривой в которой имеет с ней соприкосновение, порядок которого не ниже трёх, и касательная разбивает кривую .
Условие смены знака ориентированной кривизны не равносильно разбиению кривой на вогнутую и выпуклую часть. Так, в случае точки возврата кривая может не иметь касательной. Для исключения этого вышеприведённых определениях требуется регулярность кривой. Более интересный случай — функция при при , которая в точке 0 касается оси x и пересекает её, но меняет знак вблизи нуля бесконечное число раз; здесь даже существует вторая непрерывная производная . Для исключения такого случая требуют, чтобы функция имела изолированный экстремум (см. ниже).
Точка кривой называется точкой распрямления , если кривизна кривой в этой точке равна нулю . Иногда точку распрямления кривой, не являющуюся точкой перегиба этой кривой, называют параболической точкой распрямления .
Дифференцируемая функция имеет точку перегиба тогда и только тогда, когда её первая производная , , имеет изолированный экстремум в точке (это не то же самое, что имеет экстремум в этой точке). То есть в некоторой окрестности точки имеется одна и только одна точка, в которой имеет (локальный) минимум или максимум. Если все экстремумы функции изолированы , то точка перегиба — это точка на графике , в которой касательная пересекает кривую .
Высшей (вырожденной) вершиной регулярной кривой называется такая её точка, в которой соприкасающаяся окружность имеет с ней касание, порядок которого выше третьего .
Восходящая точка перегиба — это точка перегиба, где производная имеет локальный минимум, и нисходящая точка перегиба — это точка перегиба, где производная имеет локальный максимум.
Для алгебраической кривой несингулярная точка является точкой перегиба тогда и только тогда, когда кратность точки пересечения касательной с кривой нечётна и больше двух .
Точка перегиба однозначно характеризуется двумя свойствами:
Если кривая задана как график дифференцируемой функции , точка перегиба является точкой экстремума для .
Если является точкой перегиба для , то вторая производная равна нулю, если существует, но это условие не является достаточным . Требуется, чтобы наименьший порядок ненулевой производной (выше второй) был нечётным (третья, пятая и т. д. производные). Если наименьший порядок ненулевой производной чётен, точка не является точкой перегиба, а является параболической точкой распрямления . В алгебраической геометрии, однако, как точки перегиба, так и точки спрямления обычно называют точками перегиба .
Определение предполагает, что имеет ненулевую производную более высокого порядка по , которая не обязательно существует. Но если таковая существует, из определения следует, что знак постоянен по обеим сторонам от в окрестности точки .
Достаточное условие точки перегиба:
1) Достаточным условием точки перегиба является:
2) Другое достаточное условие требует, чтобы и имели разные знаки в окрестности точки x при условии, что в данной точке существует касательная .
Точки перегиба можно классифицировать согласно производной :
Примером седловой точки является точка графика . Касательной служит ось , и она разделяет график в этой точке.
Нестационарные точки перегиба можно продемонстрировать графиком функции , если его чуть повернуть относительно начала координат. Касательная в начале координат всё ещё делит график на две части, но градиент не равен нулю.
Некоторые функции меняют выпуклость/вогнутость в некоторой точке, но не имеют в этой точке перегиба. Вместо этого они могут менять кривизну при переходе вертикальной асимптоты или в точке разрыва. Возьмём, например, функцию . Она выпукла при и вогнута при . Однако у этой функции нет точки перегиба, поскольку и не принадлежат области определения функции.