Степень вершины (теория графов)
- 1 year ago
- 0
- 0
Вершинa графа — фундаментальное понятие теории графов. Неориентированный граф состоит из множества вершин и множества рёбер (неупорядоченных пар вершин), в то время как ориентированный граф состоит из множества вершин и множества дуг (упорядоченных пар вершин). На рисунках, представляющих граф, вершина обычно обозначается кружком с меткой, ребро — линией, дуга — стрелкой, соединяющей вершины.
С точки зрения теории графов, вершины рассматриваются как лишённые характерных черт неделимые объекты, хотя они могут представлять некоторые структуры, зависящие от задачи, из которой возник граф. Например семантическая сеть — это граф, в котором вершины представляют понятие класса объектов.
Две вершины, образующие ребро, называются конечными вершинами ребра и говорят, что ребро инцидентно вершинам. Говорят, что вершина w смежна другой вершине v , если граф содержит ребро ( v , w ). Окрестностью вершины v называется порождённый подграф , образованный всеми вершинами, смежными v .
Степенью вершины графа называется число рёбер, инцидентных ей. Вершина называется изолированной , если её степень равна нулю. То есть это вершина, не являющаяся конечной ни для какого ребра. Вершина называется листом (или висячей ), если имеет степень единица. В ориентированном графе различают полустепень исхода (число исходящих дуг) и полустепень захода (число входящих рёбер). Источником называется вершина с нулевой полустепенью захода, а вершина с нулевой степенью исхода называется стоком .
Шарниром называется вершина, удаление которой приводит к увеличению компонент связности графа. Вершинным сепаратором называется набор вершин, удаление которых приводит к увеличению компонент связности графа. Вершинно k-связный граф — это граф, в котором удаление менее k вершин всегда оставляет граф связным. Независимым множеством называется множество вершин, никакие две из которых не являются смежными, а вершинным покрытием называется множество вершин, которое включает хотя бы одну конечную вершину любого ребра графа. графа называется векторное пространство, имеющее в качестве базиса векторы, соответствующие вершинам графа (над полем чисел {0, 1}) .
Граф называется вершинно-транзитивным если он имеет симметрии, которые переводят любую вершину в любую другую вершину. В контексте перечисления графов и изоморфизма графов важно различать помеченные вершины и непомеченные вершины . Помеченная вершина — это связанная с вершиной дополнительная информация, которая позволяет отличить её от других помеченных вершин. Два графа можно считать изоморфными только если изоморфизм переводит вершины в вершины, имеющие те же метки. Непомеченные вершины могут при этом переводиться в другие вершины, основываясь только на смежности и не используя дополнительную информацию.
Вершины графа аналогичны вершинам многогранника , но это не то же самое — многогранника образует граф, вершины которого являются вершинами многогранника, но вершины многогранника имеют дополнительную структуру (геометрическое местоположение), которая игнорируется в теории графов. Вершинная фигура многогранника аналогична окрестности вершины графа.