Interested Article - Функция распределения (статистическая физика)

Статистическая физика
Термодинамика
Молекулярно-кинетическая теория
См. также: Портал:Физика

Функция статистического распределения ( функция распределения в статистической физике) — плотность вероятности в фазовом пространстве . Одно из основополагающих понятий статистической физики . Знание функции распределения полностью определяет вероятностные свойства рассматриваемой системы.

Механическое состояние любой системы однозначно определяется координатами и импульсами её частиц ( i=1,2,…, d ; d — число степеней свободы системы). Набор величин и образуют фазовое пространство .

Полная функция статистического распределения

Вероятность нахождения системы в элементе фазового пространства , с точкой (q, p) внутри, даётся формулой:

Функцию называют полной функцией статистического распределения (или просто функцией распределения). Фактически она представляет собой плотность изображающих точек в фазовом пространстве. Функция удовлетворяет условию :

причём интеграл берётся по всему фазовому пространству. В соответствующем механике случае система находится в определённом микроскопическом состоянии, то есть обладает заданными и , и тогда

где (δ — функция Дирака ). Помимо самих вероятностей различных микроскопических состояний, функция позволяет найти среднее статистическое значение любой физической величины — функции q и p :

где «крышечка» означает зависимость от фазовых переменных, а скобка — статистическое усреднение.

Разобьём систему на малые, но макроскопические подсистемы. Можно утверждать о статистической независимости таких подсистем вследствие их слабого взаимодействия с окружением (во взаимодействии с окружением принимают участие лишь частицы, близкие к границе подсистемы; в случае макроскопичности подсистемы их число мало по сравнению с полным числом её частиц). Статистическая независимость подсистем приводит к следующему результату для функции распределения

Индекс n относится к n -й подсистеме. Каждую из функций можно считать нормированной в соответствии с условием (2). При этом автоматически будет нормирована и функция . Понятие о статистической независимости является приближенным. Приближенным в свою очередь является и равенство (3): оно не учитывает корреляции частиц, принадлежащих различным подсистемам. Существенно, однако, что в обычных физических условиях корреляции быстро ослабевают по мере удаления частиц (или групп частиц) друг от друга. Для системы существует характерный параметр — , вне которого частицы ведут себя статистически независимо. В подсистемах макроскопических размеров подавляющее число частиц одной подсистемы лежит вне радиуса корреляций от частиц другой, и по отношению к этим частицам равенство (3) справедливо.

Математически задание полной функции распределения равносильно заданию бесконечного числа независимых величин — её значений на континууме точек фазового пространства колоссальной размерности 2d (для макроскопических систем d ~ , где число Авогадро ).

Неполное описание

В более реальном случае неполного измерения становятся известны вероятности значений или даже средние значения лишь некоторых физических величин . Число их обычно бывает много меньше размерности фазового пространства системы. Функция распределения вероятностей значений дается равенством

где . Функция распределения может быть названа неполной. Очевидно, она позволяет найти вероятности значений лишь физических величин , зависимость которых от фазовых переменных осуществляется через . Для таких же величин она позволяет найти и средние значения:

где и интегрирование ведется по всем возможным значениям . Конечно, средние значения величин можно было бы найти с помощью полной функции распределения , если бы она была известна. Для функции так же, как и для полной функции распределения, справедливо условие нормировки:

Описание системы с помощью функции называется неполным описанием. Конкретными примерами служат описание с помощью функции распределения координат и импульсов отдельных частиц системы или описание с помощью средних значений масс , импульсов и энергий отдельных подсистем всей системы.

Временная эволюция функции распределения

Временная эволюция функции распределения подчиняется уравнению Лиувилля :

где — , действующий в пространстве фазовых функций:

,

функция Гамильтона системы. В случае, когда оператор Лиувилля не зависит от времени ( ), решение уравнения (4) имеет вид

Чтобы использовать (5) для фактического построения решения, нужно знать собственные функции и собственные значения оператора .

Пользуясь полнотой и ортонормированностью , напишем:

,

где ( спектр предполагается дискретным). В итоге получим

См. также

Литература

Источник —

Same as Функция распределения (статистическая физика)