Контейнеры
- 1 year ago
- 0
- 0
Задача об упаковке в контейнеры — NP-трудная комбинаторная задача. Задача заключается в упаковке объектов предопределённой формы в конечное число контейнеров предопределённой формы таким способом, чтобы число использованных контейнеров было наименьшим или количество или объём объектов (которые упаковывают) были наибольшими.
Существует множество разновидностей этой задачи ( , , , и т. п.), которые могут применяться в разных областях, как собственно в вопросе оптимального заполнения контейнеров, загрузки грузовиков с ограничением по весу, созданием резервных копий на съёмных носителях и т. д. Так как задача является NP-трудной , то использование точного переборного алгоритма возможно только при небольших размерностях. Обычно для решения задачи используют эвристические приближённые полиномиальные алгоритмы.
Пусть дано множество контейнеров размера и множество предметов размеров . Надо найти целое число контейнеров и разбиение множества на подмножеств таких, что для всех . Решение называется оптимальным, если минимально. Минимальное далее обозначается OPT .
Задача упаковки в контейнеры может быть сформулирована как задача целочисленного программирования следующим образом:
Минимизировать | ||
при ограничениях | ||
где , если контейнер используется и , если предмет помещён в контейнер .
Простейшими полиномиальными алгоритмами упаковки являются алгоритмы Best Fit Decreasing — BFD (Наилучший подходящий по убыванию) и First Fit Decreasing — FFD (Первый подходящий по убыванию). Предметы упорядочивают по убыванию размеров и последовательно пакуют либо в контейнер, в котором после упаковки останется наименьший свободный объём — BFD, либо в первый контейнер куда он помещается — FFD. Доказано, что эти алгоритмы используют не более
контейнеров .
Однако для задачи упаковки существуют и асимптотически ε -оптимальные полиномиальные алгоритмы.
Задача определения, равно ли OPT двум или трем является NP-трудной. Поэтому для любого ε > 0, трудно упаковать предметы в (3/2 − ε)OPT контейнеров. (Если такой полиномиальный алгоритм существует, то за полиномиальное время можно определить разделятся ли n неотрицательных чисел на два множества с одинаковой суммой элементов. Однако известно, что эта проблема NP-трудна.) Следовательно, если P не совпадает с NP, то для задачи упаковки в контейнеры нет алгоритма приближенной схемы полиномиального времени (PTAS). С другой стороны, для всякого ε >0 можно найти решение с не более, чем (1 + ε)OPT + 1 контейнерами за полиномиальное время. Такие алгоритмы относятся к асимптотической PTAS. Но поскольку в оценке сложности этого класса алгоритмов обе константы произвольно зависят от ε, подобные алгоритмы в отличие от FFD и BFD могут быть практически бесполезными.
Для некоторого класса вероятностных распределений размеров упаковываемых предметов, включающего функции распределения выпуклые вверх и вниз, существует практический полиномиальный алгоритм упаковки асимптотически оптимальный почти наверное при неограниченном росте числа предметов. Для распределений не входящих в этот класс могут строиться индивидуальные полиномиальные асимптотически оптимальные алгоритмы.
{{
citation
}}
:
|contribution=
игнорируется (
справка
)
;
Неизвестный параметр
|month=
игнорируется (
справка
)
{{
citation
}}
:
|contribution=
игнорируется (
справка
)
;
Неизвестный параметр
|month=
игнорируется (
справка
)