Полупроводниковые приборы
- 1 year ago
- 0
- 0
Леги́рование полупроводников ( нем. legieren — « сплавлять », от лат. ligare — «связывать») — внедрение небольших количеств примесей или структурных дефектов с целью контролируемого изменения электрических свойств полупроводника , в частности, его типа проводимости.
При производстве полупроводниковых приборов легирование является одним из важнейших технологических процессов (наряду с травлением и осаждением ).
Основная цель — изменить тип проводимости и концентрацию носителей в объёме полупроводника для получения заданных свойств (проводимости, получения требуемой плавности p-n-перехода ). Самыми распространёнными легирующими примесями для кремния являются фосфор и мышьяк (позволяют получить n-тип проводимости ) и бор ( p-тип ).
В зависимости от степени легирования (концентрации донорной и акцепторных примесей), различают симметричные и несимметричные p-n-переходы. В симметричных переходах концентрация носителей в областях полупроводника почти одинакова. В несимметричных переходах концентрации могут различаться во много раз .
В настоящее время технологически легирование производится тремя способами: ионная имплантация , ядерное легирование (нейтронно-трансмутационное легирование, НТЛ) и термодиффузия .
Ионная имплантация позволяет контролировать параметры приборов более точно, чем термодиффузия, и получать более резкие p-n-переходы. Технологически проходит в несколько этапов:
Ионная имплантация контролируется следующими параметрами:
При нейтронно-трансмутационном легировании легирующие примеси не вводятся в полупроводник, а образуются («трансмутируют») из атомов исходного вещества ( кремний , арсенид галлия ) в результате ядерных реакций , вызванных облучением исходного вещества нейтронами. НТЛ позволяет получать монокристаллический кремний с особо равномерным распределением атомов примеси. Метод используется в основном для легирования подложки, особенно для устройств силовой электроники .
Когда облучаемым веществом является кремний, под воздействием потока тепловых нейтронов из изотопа кремния 30 Si образуется радиоактивный изотоп 31 Si, который затем испытывает бета-распад с периодом полураспада около 157 минут и образованием стабильного изотопа фосфора 31 P. Образующийся при этом стабильный изотоп 31 P создаёт проводимость n-типа в кремнии. «Под воздействием потока нейтронов в кремнии появляются равномерные вкрапления атомов фосфора ».
В России возможность нейтронно-трансмутационного легирования кремния в промышленных масштабах на реакторах АЭС и без ущерба для производства электроэнергии была показана в 1980 году.
В мире производится около 150 тонн ядерно-легированного кремния в год на 2-х десятках облучательных установках (в Германии, Австралии, Южной Корее…) . «Силовой» кремний, облучённое сырьё, продаётся в Китай, где сконцентрирована большая часть мирового добавления стоимости электронной промышленности.
Термодиффузия содержит следующие этапы: