Непрерывное вейвлет-преобразование
- 1 year ago
- 0
- 0
Непреры́вное отображе́ние ( непрерывная функция ) — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Наиболее общее определение формулируется для отображений топологических пространств : непрерывным считается отображение, при котором прообраз всякого открытого множества открыт. Непрерывность отображений других типов пространств — метрических , нормированных и тому подобных пространств — является непосредственным следствием общего (топологического) определения, но формулируется с использованием структур, заданных в соответствующих пространствах — метрики , нормы и так далее.
В математическом анализе и комплексном анализе , где рассматриваются числовые функции и их обобщения на случай многомерных пространств, непрерывность функции вводится на языке пределов : такие определения непрерывности были исторически первыми и послужили основой для формирования общего понятия.
Существование непрерывных отображений между пространствами позволяет «переносить» свойства одного пространства в другое: например, непрерывный образ компактного пространства также является компактным.
Непрерывное отображение, которое обладает обратным и также непрерывным отображением, называется гомеоморфизмом . Гомеоморфизм порождает на классе топологических пространств отношение эквивалентности ; пространства, гомеоморфные друг другу, обладают одними и теми же топологическими свойствами, а сами свойства, которые сохраняются при гомеоморфизмах, называются топологическими инвариантами .
Наиболее общее определение даётся в топологии .
Отображение топологического пространства в топологическое пространство называется непрерывным , если прообраз любого открытого множества открыт, то есть:
Если рассмотреть некоторое подмножество множества , то на этом множестве, естественным образом, индуцируется топология , которую составляют всевозможные пересечения множества с множествами, входящими в топологию .
Отображение , непрерывное на множестве , будет непрерывным на любом его подмножестве в смысле индуцированной на нём топологии.
Непрерывность в точке формулируется на языке окрестностей и связывает систему окрестностей точки области определения с системой окрестностей соответствующей ей точки области значений.
Отображение называется непрерывным в точке , если для любой окрестности точки найдется такая окрестность точки , что .
Отображение непрерывно на некотором множестве тогда и только тогда, когда оно непрерывно в каждой точке данного множества.
В случае, если область определения функции удовлетворяет первой аксиоме счетности , в частности для метрических пространств, непрерывность в точке эквивалентна так называемой секвенциальной непрерывности: если , то . В общем же случае, секвенциально непрерывные прообразы секвенциально замкнутых множеств секвенциально замкнуты, что является аналогом эквивалентного определения непрерывных отображений как тех, при которых прообразы замкнутых множеств замкнуты.
Следующие ниже формулировки эквивалентны:
Таким образом, каждая из этих формулировок может быть использована в качестве определения непрерывности отображения.
В метрических пространствах топология задаётся семейством открытых шаров разных «радиусов», определяемых метрикой, поэтому общее определение формулируется в терминах этой метрики (" эпсилон-дельта " - определение):
Отображение метрического пространства в метрическое пространство называется непрерывным в точке , если для всякого существует , что для всякого , такого, что , выполняется неравенство: .
Для линейных нормированных пространств (включая гильбертовы и конечномерное евклидовы пространства) метрика задаётся нормой, поэтому то же определение даётся в терминах нормы.
Пусть, отображение между нормированными пространствами с нормами и соответственно. Функция непрерывна в точке , если для любого числа найдётся такое число , что для всех точек , таких что выполнено неравенство ,
Метрические пространства (а значит и нормированные пространства) удовлетворяют первой аксиоме счётности, поэтому данное определение эквивалентно определению секвенциальной непрерывности.
В случае числовой оси нормой обычно является модуль числа, поэтому определение непрерывности функционала (или ), где — произвольное топологическое пространство , следующее:
Функционал называется непрерывным в точке , если для любого найдется окрестность этой точки, такая, что выполнено условие .
Множество непрерывных на функционалов (функций) принято обозначать . Частным случаем непрерывных функционалов являются непрерывные функции числового аргумента.
Пусть, (или ). Функция непрерывна в точке , если для любого числа найдётся такое число , что для всех точек условие влечёт .
Другими словами, функция непрерывна в точке , предельной для множества , если она имеет предел в данной точке и этот предел совпадает со значением функции в данной точке:
Функция непрерывна на множестве , если она непрерывна в каждой точке данного множества. В этом случае говорят, что функция класса и пишут: или, подробнее, .
от 18 октября 2011 на Wayback Machine Мультик про непрерывность