Interested Article - Mx-магнитометр
- 2021-06-05
- 1
Mx- магнитометр — наиболее распространённый вид оптического квантового магнитометра, работающего на парах щелочных металлов ( цезия , рубидия , калия ).
Принцип работы
При комнатной температуре тепловая энергия атомов намного больше разницы энергий основного состояния — , поэтому согласно распределению Больцмана населённости всех уровней одинаковы, см. схему атомов рубидия Rb87. При взаимодействии атомов с оптическим полем круговой поляризации в атомном газе создается неравновесное распределение населённости атомов по зеемановским подуровням основных состояний. В результате атомный газ поляризуется и у него появляется магнитный момент .
Известно, что магнитный момент, помещённый в постоянное магнитное поле начинает прецессировать с частотой . Такое поведение описывается уравнениями Блоха .
В Мх-магнитометре лазерный луч распространяется под углом 45 градусов по отношению к направлению измеряемому магнитному полю . Кроме поля , перпендикулярно к нему приложено также небольшое осциллирующее поле Невозможно разобрать выражение (SVG (MathML можно включить с помощью плагина для браузера): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «http://localhost:6011/ru.wikipedia.org/v1/»:): {\displaystyle B_{RF}(t)} . Это поле Невозможно разобрать выражение (SVG (MathML можно включить с помощью плагина для браузера): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «http://localhost:6011/ru.wikipedia.org/v1/»:): {\displaystyle B_{RF}(t)} навязывает фазу прецессирующих вокруг поля Во на частоте магнитного момента атомов (спинов). Проекция магнитного момента на направление распространения света прецессирующей поляризации будет оставаться постоянной до момента включения поля Невозможно разобрать выражение (SVG (MathML можно включить с помощью плагина для браузера): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «http://localhost:6011/ru.wikipedia.org/v1/»:): {\displaystyle B_{RF}(t)} . Включение этого поля приведёт к изменению населённости между зеемановскими подуровнями и, как следствие, это поле вызовет модуляцию поглощения проекции магнитного момента , которое регистрируется фотодетектором, затем усиливается, фазовращателем корректируется фаза сигнала, и подаётся на радиочастотную катушку. Таким образом создается петля положительной обратной связи. Подобрав фазу сигнала добиваются генерации поля на частоте Ларморовской прецессии . Эта частота измеряется с помощью частотомера и по её величине определяют величину магнитного поля.
Чувствительность магнитометра
Чувствительность магнитометра определяется соотношением где — ширина магнитного резонанса, - его амплитуда, — гиромагнитное отношение , - среднеквадратичный уровень шумов, усредненных за время , — форм фактор резонанса приблизительно равный 1. В случае преобладания дробовых шумов в фототоке детектора эта формула принимает вид
— плотность дробового шума , В случае преобладания в фототоке детектора она выглядит так:
— поляризации атома
Резонансный свет лазера (Light source) накачивает атомы на уровни основного состояния . Линейную поляризацию света лазера с помощью фазовой пластины превращают в круговую . Благодаря этому зеемановских подуровней аккумулируется на уровнях с большой проекцией момента . Вектор распространения света и направление измеряемого магнитного поля повёрнуты относительно друг друга на угол 45 градусов (синяя стрелка). Перпендикулярно полю включается радиочастотное поле . Пропускание прошедшего через ячейку света модулируется этим полем и регистрируется фотодиодом .
Модуляция света полем происходит благодаря двум процессам: за счёт изменения поглощения из-за переноса населённости с одного зеемановского подуровня на другой и благодаря модуляции вероятности взаимодействия света с атомом за счёт создания между ними квантовой когерентности.
Ширина резонанса определяется различными релаксационными процессами :
- столкновениями со стенками ячейки, с молекулами буферных газов, и атом- атом столкновениями
- полевым уширением, вызываемым как оптическим, так и радиочастотным полями;
- конечным временем взаимодействия с оптическим полем, определяемым пролётом атомов через сечение оптического поля
Примечания
- S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, and A. Weis, Eur. Phys. J. D 38, 239—247 (2006), DOI: 10.1140/epjd/e2006-00037-y THE EUROPEAN PHYSICAL JOURNAL D , A high-sensitivity laser-pumped Mx-magnetometer,
- А. К. Вершовский, Новые квантовые радиооптические системы и методы измерения слабых магнитных полей, диссертация на соискание ученой степени доктора физико-математических наук, Институт им. А. Ф. Иоффе, Санкт Петербург, 2007 г.
Литература
- Georg Bison, Development of an optical cardio-magnetometer chapter 2. Optimization and performance of an optical cardiomagnetometer, der Mathematisch-Naturwissenschaftlichen FakultÄat der UniversitÄat Freiburg in der Schweiz, Nummer der Dissertation: 1450 UniversitÄatsdruckerei Freiburg, 2004
- D. Budker, W. Gavlik, D.F. Kimball, S.M. Rochester, V.V. Yashuchuk, and A. Weis, Resonant nonlinear magneto-optical effects in atoms, Review of Modern Physics, V. 74 1153—1201 (2002)
- Dmitry Budker and Michael Romalis, Optical magnetometry, Nature physics, v.3 227—234 (2007)
- S.Groeger, G. Bison, J.-L. Schenker. R. Wynands, and A. Weis, A high-sensitivity laser-pumped Mx magnetometer, Eur. Phys. J. D, v. 38, 239—247 (2006)
- Optical Magnetometry. editors: Dmitry Budker, Derek F. Jackson Kimball,
Cambridge University Press, PUBLISHED: April 2013, ISBN 9781107010352
- 2021-06-05
- 1