Interested Article - Модерация в статистике
![](/images/007/066/7066219/1.jpg?rand=923273)
![](https://cdn.wafarin.com/avatars/0f65015d6407a6165630a4250ff4a4c5.jpg)
- 2021-11-07
- 1
Модерация в статистике и регрессионном анализе — зависимость связи между двумя переменными от третьей переменной, которая называется модератором . Эффект модератора статистически характеризуется как взаимодействие ; то есть категориальная (пол, этническая принадлежность , класс ) или количественная (уровень заработной платы) переменная, которая влияет на направление и/или силу связи между зависимыми и независимыми переменными . В частности, в корреляционном анализе модератором является третья переменная, которая влияет на корреляцию нулевого порядка между двумя другими переменными, или наклон зависимой переменной к независимой переменной. В дисперсионном анализе основной снижающий эффект может быть представлен как взаимодействие между основной независимой переменной и фактором, задающим соответствующие условия её функционирования .
Примеры
![](/images/007/066/7066219/1.jpg?rand=173480)
![](/images/007/066/7066219/2.jpg?rand=835034)
Анализ с модерацией в предполагает использование линейного множественного регрессионного анализа или причинно-следственного моделирования . Для количественной оценки влияния модератора в множественном регрессионном анализе , регрессии случайной величины на , в модель добавляется дополнительный член, который представляет собой взаимодействие между и модератором.
Таким образом, зависимость целевой переменной от и модерирующей переменной будет выглядеть следующим образом:
.
В этом случае роль как модератора достигается путём оценки , параметра для члена взаимодействия .
Мультиколлинеарность в регрессии
В модерируемом регрессионном анализе вычисляется новый предиктор взаимодействия , который будет соотнесён с двумя основными переменными, используемыми для его расчёта. Это проблема мультиколлинеарности в умеренной регрессии. Мультиколлинеарность приводит к тому, что коэффициенты оцениваются с более высокими стандартными ошибками и, следовательно, большей неопределённостью .
В качестве средства от мультиколлинеарности используется центрирование среднего значения , однако оно не требуется в регрессионном анализе, поскольку в корреляционной матрице данные уже центрируются после вычисления корреляций. Корреляции выводятся из перекрёстного произведения двух стандартных баллов (Z-баллов) или статистических моментов.
Две категориальные независимые переменные
Если обе независимые переменные являются категориальными , мы можем проанализировать результаты регрессии для одной независимой переменной на определённом уровне другой независимой переменной. Допустим, что A и B являются одиночными фиктивными кодированными переменными (0,1) и что A представляет этническую принадлежность (0 = европейцы, 1 = азиаты), а B представляет условие в исследовании (0 = контрольное, 1 = тренировочное). Затем эффект взаимодействия показывает, отличается ли влияние условия на зависимую переменную Y для европейцев и азиатов и отличается ли влияние этнической принадлежности для этих двух условий. Коэффициент А показывает влияние этнической принадлежности на Y для контрольного условия, в то время как коэффициент В показывает эффект наложения экспериментального условия для европейских участников.
Чтобы проверить, есть ли какая-либо существенная разница между европейцами и азиатами в условиях эксперимента, мы можем просто запустить анализ с переменной условия, закодированной в обратном порядке (0 = экспериментальная, 1 = контрольная), так что коэффициент этнической принадлежности представляет влияние этнической принадлежности на Y в условиях эксперимента. Аналогичным образом, если мы хотим увидеть, оказывает ли эффект на участников из Азии, мы можем изменить код переменной этнической принадлежности (0 = азиаты, 1 = европейцы).
Одна категориальная и одна непрерывная независимая переменная
![](/images/007/066/7066219/13.jpg?rand=467138)
Если первая независимая переменная является категориальной переменной (например, пол), а вторая — непрерывной переменной (например, баллы по шкале SWLS), то b1 представляет собой разницу в зависимой переменной между мужчинами и женщинами, когда удовлетворённость жизнью равна нулю. Однако нулевой балл по шкале удовлетворённости не имеет смысла, так как диапазон баллов составляет от 7 до 35 . Если вычесть среднее значение оценки SWLS для выборки из оценки каждого участника, то среднее значение результирующей центрированной оценки SWLS будет равно нулю. При повторном анализе b1 представляет разницу между мужчинами и женщинами на среднем уровне оценки SWLS выборки .
Для исследования простого влияния пола на зависимую переменную (Y) возможно распределить её по трём категориям: высокий, умеренный и низкий SWLS . Если баллы непрерывной переменной не стандартизированы, можно просто вычислить эти три значения, добавляя или вычитая одно стандартное отклонение исходных баллов; если баллы непрерывной переменной стандартизированы, можно вычислить три значения следующим образом: высокий = стандартизированный балл — 1, умеренный (среднее значение = 0), низкий = стандартизированный балл + 1. Как и в случае с двумя категориальными независимыми переменными, b2 представляет собой влияние оценки SWLS на зависимую переменную для женщин. Путём обратного кодирования гендерной переменной можно получить эффект оценки SWLS на зависимую переменную для мужчин.
![](/images/007/066/7066219/14.jpg?rand=716655)
Кодирование в модерируемой регрессии
![](/images/007/066/7066219/15.jpg?rand=297265)
![](/images/007/066/7066219/16.jpg?rand=119960)
При рассмотрении категориальных переменных , таких как этнические группы и экспериментальные методы лечения, как независимые переменные в модерируемой регрессии, необходимо кодировать переменные таким образом, чтобы каждая кодовая переменная представляла определённую настройку категориальной переменной. Существует три основных способа кодирования: Dummy-кодирование переменных, кодирование эффектов и контрастное кодирование .
Dummy-кодирование используется, когда имеется референтная группа или одно конкретное условие (например, контрольная группа в эксперименте), которое должно быть сопоставлено с каждой из других экспериментальных групп, используя среднее значение референтной группы, а каждый из нестандартизированных коэффициентов регрессии — это разница в зависимой переменной между одной из групп лечения и средним значением референтной группы (или контрольной группы). Эта система кодирования аналогична анализу ANOVA и подходит, когда исследователи имеют определённую референтную группу и хотят сравнить с ней каждую из других групп.
Кодирование эффектов используется, когда у человека нет определённой группы сравнения или контроля и нет запланированных ортогональных контрастов. В этом случае коэффициент регрессии — это разница между средним значением одной группы и средним значением всех групповых средних (например, среднее значение группы А минус среднее значение всех групп). Эта система кодирования подходит, когда группы представляют естественные категории.
Контрастное кодирование используется, когда имеется ряд ортогональных контрастов или групповых сравнений, которые должны быть исследованы. В этом случае нестандартизированный коэффициент регрессии представляет собой разницу между невзвешенным средним средним одной группы (А) и невзвешенным средним другой группы (В), где А и В — два набора групп в контрасте. Эта система кодирования уместна, когда у исследователей есть априорная гипотеза относительно специфических различий между групповыми средними .
Две непрерывные независимые переменные
Если обе независимые переменные непрерывны, для интерпретации полезно либо центрировать, либо стандартизировать независимые переменные X и Z. (Центрирование включает вычитание общего среднего балла выборки из исходного балла; стандартизация делает то же самое с последующим делением на общее стандартное отклонение выборки.) Центрируя или стандартизируя независимые переменные, коэффициент X или Z можно интерпретировать как влияние этой переменной на Y на среднем уровне другой независимой переменной .
Чтобы исследовать эффект взаимодействия, часто полезно построить график влияния X на Y при низких и высоких значениях Z. Часто для этого выбираются значения Z, которые на одно стандартное отклонение выше и ниже среднего, но можно использовать любые разумные значения (и в некоторых случаях есть более значимые значения для выбора). График обычно отображается путём оценки значений Y для высоких и низких значений как X, так и Z и создания двух линий для представления влияния X на Y при двух значениях Z. Иногда это дополняется простым анализом наклона, который определяет, является ли влияние X на Y статистически значимым при определённых значениях Z. Существуют различные инструменты, помогающие исследователям строить и интерпретировать такие двусторонние взаимодействия .
Взаимодействие на высоком уровне
![](/images/007/066/7066219/17.jpg?rand=290136)
Принципы двухсторонних взаимодействий применимы, когда мы хотим исследовать трёхсторонние или высокоуровневые взаимодействия. Например, если мы имеем трёхстороннее взаимодействие между A, B и C, уравнение регрессии будет выглядеть следующим образом:
![](/images/007/066/7066219/19.jpg?rand=55802)
Побочные эффекты высшего порядка
Стоит отметить, что надёжность условий более высокого уровня зависит от надёжности условий более низкого уровня. Например, если надёжность для переменной A равна 0,70, а надёжность для переменной B равна 0,80, то надёжность для переменной взаимодействия AxB равна 0,70 × 0,80 = 0,56. В этом случае низкая надёжность члена взаимодействия приводит к низкой мощности; поэтому мы не можем найти эффекты взаимодействия между А и В, которые действительно существуют. Решение этой проблемы заключается в использовании высоконадёжных мер для каждой независимой переменной.
Ещё одно объяснение для интерпретации эффектов взаимодействия состоит в том, что когда переменная A и переменная B сильно коррелируют, то слагаемое AxB будет сильно коррелировать с опущенной переменной A2; следовательно, то, что кажется значительным эффектом модерации, на самом деле может быть значительным нелинейным эффектом только A. Если это так, то стоит проверить нелинейную регрессионную модель, добавив нелинейные члены в отдельных переменных в модерируемый регрессионный анализ, чтобы увидеть, остаются ли взаимодействия значимыми. Если эффект взаимодействия AxB все ещё значим, мы будем более уверены в том, что действительно существует эффект модерации; однако, если эффект взаимодействия больше не значим после добавления нелинейного члена, мы будем менее уверены в существовании эффекта умеренности, и нелинейная модель будет предпочтительнее, потому что она более экономна.
Примечания
- Anna Shirokanova. (англ.) .
- ↑ Cohen, Jacob; Cohen, Patricia; Leona S. Aiken; West, Stephen H. (2003). Applied multiple regression/correlation analysis for the behavioral sciences . Hillsdale, N.J: L. Erlbaum Associates. ISBN .
- . psylab.info . Дата обращения: 5 марта 2021. 10 декабря 2019 года.
- Cohen Jacob; Cohen Patricia; West Stephen G.; Aiken Leona S. Applied multiple regression/correlation analysis for the behavioral sciences (3. ed.). Mahwah, NJ [u.a.]: Erlbaum. pp. 255—301. .
- Aiken L.S., West., S.G. (1996). Multiple regression testing and interpretation (1. paperback print. ed.). Newbury Park, Calif. [u.a.]: Sage Publications, Inc. ISBN .
- Cohen Jacob; Cohen Patricia; West Stephen G.; Aiken Leona S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3. ed.). Mahwah, NJ [u.a.]: Erlbaum. pp. 302—353. ISBN .
- Dawson, J. F. (2013).
- . www.jeremydawson.co.uk . Дата обращения: 8 марта 2021. 1 ноября 2020 года.
![](https://cdn.wafarin.com/avatars/0f65015d6407a6165630a4250ff4a4c5.jpg)
- 2021-11-07
- 1