Interested Article - Удар

Уда́р — это кратковременное взаимодействие тел, при котором происходит перераспределение кинетической энергии . Часто носит разрушительный для взаимодействующих тел характер. В физике под ударом понимают такой тип взаимодействия движущихся тел, при котором временем взаимодействия можно пренебречь.

Физическая абстракция

При ударе выполняются закон сохранения импульса и закон сохранения момента импульса , но обычно не выполняется закон сохранения механической энергии , заключённой в поступательном движении сталкивающихся тел. При рассмотрении упрощённой модели удара предполагается, что за время соприкосновения тел при ударе действием внешних сил можно пренебречь, тогда импульс системы тел при ударе сохраняется, в более точных моделях нужно учитывать привнесённый в систему импульс внешних сил. Часть поступательной кинетической энергии при не абсолютно упругом ударе переходит во внутреннюю энергию соударяющихся тел — на возбуждение механических колебаний и акустических волн, повышение внутренней энергии упругих связей — деформацию и на нагрев тел. Механические колебания и волны воспринимаются как звук удара и вибрации.

Результат столкновения двух тел можно полностью рассчитать, если известны их импульсы, массы и механическая энергия поступательного движения после удара. Предельные случаи — абсолютно упругий удар и абсолютно неупругий удар , промежуточные случаи характеризуют коэффициентом сохранения энергии k , определяемым как отношение кинетической энергии после удара к кинетической энергии до удара. Технически k определяют при ударе одного тела о неподвижную стенку, сделанную из материала другого тела. Таким образом, k является внутренней характеристикой материала, из которого изготовлены тела, и в первом приближении не зависит от остальных параметров тел (формы, скорости и т. п.).

Если не известны потери энергии либо происходит одновременное столкновение нескольких тел или столкновение точечных частиц, то определить однозначно движение тел после удара невозможно. В этом случае рассматривается зависимость возможных углов рассеяния и скоростей тел после удара от начальных условий. Например, при столкновении двух элементарных частиц рассеяние может произойти лишь в некотором диапазоне углов, определяющемся предельным углом рассеяния .

В общем случае решение задачи о столкновении кроме знания начальных скоростей требует дополнительных параметров.

Абсолютно упругий удар

Абсолютно упругий удар — это модель соударения, при которой полная кинетическая энергия системы сохраняется. В классической механике при этом пренебрегают деформациями тел. Соответственно, считается, что энергия на деформации не теряется, а взаимодействие распространяется по всему телу мгновенно. Хорошим приближением к модели абсолютно упругого удара является столкновение бильярдных шаров или упругих мячиков.

Математическая модель абсолютно упругого удара работает примерно следующим образом:

  1. есть в наличии два абсолютно твёрдых тела, которые сталкиваются;
  2. в точке контакта происходят упругие деформации . Кинетическая энергия движущихся тел мгновенно и полностью переходит в ;
  3. в следующий момент деформированные тела принимают свою прежнюю форму, а энергия деформации полностью обратно переходит в кинетическую энергию;
  4. контакт тел прекращается, и они продолжают движение.

Для математического описания абсолютно упругих ударов используется закон сохранения энергии и закон сохранения импульса .

Здесь — массы первого и второго тел. — скорость первого тела до, и после взаимодействия. — скорость второго тела до, и после взаимодействия.

Важно — импульсы складываются векторно, а энергии скалярно.

Вывод формул для конечных скоростей после столкновения

Зная начальные скорости и массы из законов сохранения можно вывести конечные скорости после столкновения. Покажем это на примере, когда два тела сталкиваются вдоль одной прямой. Законы сохранения энергии и импульса можно переписать как:

Делим одно уравнение на другое: и получаем, что Из этого уравнения выразим скорости после столкновения:

Подставим конечные скорости в закон сохранения импульса, получаем:

Выразим отсюда конечные скорости и :

Абсолютно упругий удар тел равных масс
Абсолютно упругий удар двух тел разных масс
Абсолютно упругий удар тел равных масс, но с различными направлениями и модулями скоростей

Абсолютно упругий удар элементарных частиц

Абсолютно упругий удар может выполняться совершенно точно при столкновениях элементарных частиц при низких энергиях. Это является следствием принципов квантовой механики , запрещающей произвольные изменения энергии системы. Если энергии сталкивающихся частиц недостаточно для возбуждения их внутренних степеней свободы — перевода энергии частицы на верхний соседний дискретный энергетический уровень, то механическая энергия системы не меняется. Изменение механической энергии может также быть запрещено какими-то законами сохранения (момента импульса, чётности и т. п.). Надо, однако, учитывать, что при столкновении может изменяться состав системы. Простейший пример — излучение кванта света. Также может происходить распад или слияние частиц, а в определённых условиях — рождение новых частиц. В замкнутой системе при этом выполняются все законы сохранения, однако при вычислениях нужно учитывать изменение системы.

Абсолютно упругий удар в пространстве

В случае столкновения двух тел в трёхмерном пространстве векторы импульсов тел до и после столкновения лежат в одной плоскости. Вектор скорости каждого тела может быть разложен на две компоненты: одна по общей нормали поверхности сталкивающихся тел в точке контакта, а другая параллельная поверхности столкновения. Поскольку сила удара действует только по линии столкновения, компоненты скорости, векторы которых проходят по касательной к точке столкновения, не изменяются. Скорости, направленные вдоль линии столкновения, могут быть вычислены с помощью тех же уравнений, что и столкновения в одном измерении. Окончательные скорости могут быть вычислены из двух новых компонентов скоростей и будут зависеть от точки столкновения.

Если предположить, что первая частица двигается, а вторая частица находится в состоянии покоя до столкновения, то углы отклонения двух частиц, θ 1 и θ 2 , связаны с углом отклонения θ следующим выражением:

Столкновение двух тел в двумерном пространстве

Величины скоростей после столкновения будут следующими:

Двумерное столкновение двух движущихся объектов

В случае, когда оба тела движутся в плоскости, компоненты x и y скорости первого тела после соударения могут быть вычислена как:

где v 1 и v 2 скалярные величины двух первоначальных скоростей двух тел, m 1 и m 2 их массы, θ 1 и θ 2 углы движения, и маленькое Фи (φ)это угол соприкосновения. Чтобы получить ординату и абсциссу вектора скорости второго тела, необходимо заменить подстрочный индекс 1 и 2, на 2 и 1 соответственно.

Абсолютно неупругий удар

модель абсолютно неупругого удара между телами равной массы

Абсолю́тно неупру́гий удар — это удар, в результате которого тела соединяются и продолжают дальнейшее своё движение как единое тело . Его скорость может быть найдена из закона сохранения импульса:

где это общая скорость тел, полученная после удара, и — масса и скорость первого тела до соударения, и — масса и скорость второго тела до соударения. Импульсы являются величинами векторными, поэтому складываются только векторно:

.

Как и при любом ударе, при этом выполняются закон сохранения импульса и закон сохранения момента импульса , но не выполняется закон сохранения механической энергии . Часть кинетической энергии соударяемых тел в результате неупругих деформаций переходит в тепловую . В случае абсолютно неупругого удара механическая энергия уменьшается на максимально возможную величину, не противоречащую закону сохранения импульса. Данное утверждение можно принять за определение абсолютно неупругого удара в терминах энергии. При помощи теоремы Кёнига легко показать, что в этом случае тела продолжают движение как единое целое: компонента кинетической энергии, отвечающая за движение центра масс всей системы соударяемых тел, должна остаться неизменной в силу закона сохранения импульса, а кинетическая энергия в системе отсчёта, связанной с центром масс, будет минимальной в том случае, когда тела в ней покоятся.

Хорошая модель абсолютно неупругого удара — сталкивающиеся пластилиновые шарики.

Реальный удар

При реальном соударении тел наблюдаются промежуточные варианты между случаем абсолютно упругого удара — отскока, и случаем абсолютно неупругого удара — слипания соударяющихся тел.

Степень близости соударения к случаю абсолютно упругого удара характеризуют коэффициентом восстановления . При удар является абсолютно неупругим, при удар является абсолютно упругим.

Пример для соударения

Пусть — скорости тел до удара, — скорости тел после удара, — коэффициент восстановления, — полный импульс удара. Тогда:

,
,
.

Потеря кинетической энергии при ударе:

.

Для абсолютно неупругого удара : , то есть потерянная кинетическая энергия равна кинетической энергии потерянных скоростей, что следует из теоремы Карно.

Для абсолютно упругого удара . Значения коэффициента восстановления для некоторых материалов приведены в таблице.

Материал Коэффициент восстановления
Стекло
Удар дерева о гуттаперчу
Дерево
Сталь, пробка
Слоновая кость

Кроме того, при реальном ударе макроскопических тел происходит деформация соударяющихся тел и распространение по ним упругих волн, передающих взаимодействие от сталкивающихся границ по всему телу.

Пусть сталкиваются одинаковые тела. Если c скорость звука в теле, L — характерный размер каждого тела, то время удара будет порядка времени двукратного прохождения волны деформации вдоль линии соударения, что учтено множителем 2. соответствующим распространению волны в прямом и обратном направлении.

Систему сталкивающихся тел можно считать замкнутой, если импульс силы внешних сил за время соударения мал по сравнению с импульсами тел.

Кроме того, само время соударения должно быть достаточно мало, иначе при рассмотрении трудно оценить потери энергии на упругую деформацию за время удара, и при этом часть энергии расходуется на внутреннее трение, а само описание сталкивающихся тел становится сложным из-за существенного вклада внутренних колебательных степеней свободы .

В приведенном анализе необходимо, чтобы линейные деформации тел при ударе были существенно меньше, чем собственные размеры тел.

См. также

Примечания

  1. , с. 143.
  2. Зиновьев В. А. Краткий технический справочник. Том 1. — М.: Государственное издательство технико-теоретической литературы, 1949. — С. 290

Литература

  • Сивухин Д.В. Механика. — М. : Наука, 1979. — 520 с.
Источник —

Same as Удар