Глоссарий теории узлов
- 1 year ago
- 0
- 0
Центра́льное многообра́зие особой точки автономного обыкновенного дифференциального уравнения — инвариантное многообразие в фазовом пространстве , проходящее через особую точку и касающееся инвариантного центрального подпространства линеаризации дифференциального уравнения. Важный объект изучения теории дифференциальных уравнений и динамических систем . В некотором смысле, вся нетривиальная динамика системы в окрестности особой точки сосредоточена на центральном многообразии.
Рассмотрим автономное дифференциальное уравнение с особой точкой 0:
где , — линейный оператор, — гладкая функция класса , причем и . Иными словами, — линеаризация векторного поля в особой точке 0.
подпространство | название | спектр A |
---|---|---|
устойчивое ( stable ) | ||
неустойчивое ( unstable ) | ||
центральное ( center ) |
Согласно классическим результатам линейной алгебры , линейное пространство раскладывается в прямую сумму трех -инвариантных подпространств , где определяются знаком вещественной части соответствующих собственных значений (см. табл.)
Эти подпространства являются инвариантными многообразиями линеаризованной системы , решением которой является матричная экспонента . Оказывается, динамика системы в окрестности особой точки по своим свойствам близка к динамике линеаризованной системы. Точнее, справедливо следующее утверждение:
Предположим, что правая часть дифференциального уравнения (*) принадлежит классу , . Тогда в окрестности особой точки существуют многообразия и классов и соответственно, инвариантные относительно фазового потока дифференциального уравнения. Они касаются в начале координат подпространств и и называются устойчивым , неустойчивым и центральным многообразиями соответственно.
В случае, когда правая часть уравнения (*) принадлежит классу , многообразия и также принадлежат классу , но центральное многообразие , вообще говоря, может быть лишь конечно-гладким. При этом для любого сколь угодно большого числа многообразие принадлежит классу в некоторой окрестности , стягивающейся к особой точке при , так что пересечение всех окрестностей состоит лишь из самой особой точки .
Устойчивое и неустойчивое инвариантные многообразия называются также гиперболическими , они определяются единственным образом; в то же время, локальное центральное многообразие определяется не единственным образом. Очевидно, что если система (*) линейна, то инвариантные многообразия совпадают с соответствующими инвариантными подпространствами оператора .
Невырожденные особые точки на плоскости не имеют центрального многообразия. Рассмотрим простейший пример вырожденной особой точки: вида
Его неустойчивое многообразие совпадает с осью Oy и состоит из двух вертикальных и и самой особой точки. Остальные задаются уравнением
,
где .
Нетрудно видеть, что в левой полуплоскости единственная фазовая кривая, стремящаяся к особой точке, совпадает с лучом оси Ox . В то же время, в правой полуплоскости существует бесконечно много ( континуум ) фазовых кривых, стремящихся к нулю — это графики функции y(x) для любого и любого . В силу того, что функция y(x) является в нуле, мы можем составить гладкое инвариантное многообразие из луча , точки (0, 0) и любой траектории в правой полуплоскости. Любое из них локально будет центральным многообразием точки (0, 0).
Если рассматривать уравнение (*) не в некоторой окрестности особой точки 0, а во всем фазовом пространстве , можно дать определение глобального центрального многообразия . Неформально говоря, его можно определить как инвариантное многообразие, траектории на котором не стремятся к бесконечности (в прямом либо обратном времени) вдоль гиперболических направлений. В частности, глобальное центральное многообразие содержит все ограниченные траектории (а значит, и все предельные циклы , особые точки , сепаратрисные связки и т.д.)
Рассмотрим проекции пространства на соответствующие инвариантные подпространства оператора . Определим также подпространство и проекцию на него. Центральным многообразием называется множество таких точек фазового пространства, что проекция траекторий, стартующих из , на гиперболическое подпространство, ограничена. Иными словами
,
где — такое решение уравнения (*), что .
Для существования глобального центрального многообразия на функцию необходимо наложить дополнительные условия: ограниченность и липшицевость с достаточно малой константой Липшица. В этом случае глобальное центральное многообразие существует, само является липшицевым подмногообразием в и определено единственным образом. Если потребовать от гладкости порядка и малости производной, то глобальное центральное многообразие будет иметь гладкость порядка и касаться центрального инвариантного подпространства в особой точке 0. Из этого следует, что если рассматривать ограничение глобального центрального многообразия на малую окрестность особой точки, то оно будет локальным центральным многообразием — это один из способов доказательства его существования. Даже если система (*) не удовлетворяет условиям существования глобального центрального многообразия, её можно модифицировать вне какой-то окрестности нуля (домножив на подходящую гладкую срезающую функцию типа « »), так, чтобы эти условия стали выполняться, и рассмотреть ограничение имеющегося у модифицированной системы глобального центрального многообразия. Оказывается, можно сформулировать и обратное утверждение: можно глобализовать локально заданную систему и продолжить локальное центральное многообразие до глобального. Точнее, это утверждение формулируется следующим образом:
Следует отметить, что переход от локальных задач к глобальным и наоборот часто используется при доказательстве утверждений, связанных с центральными многообразиями.
Как было сказано выше, нетривиальная динамика вблизи особой точки «сосредоточена» на центральном многообразии. Если особая точка гиперболическая (то есть линеаризация не содержит собственных значений с нулевой вещественной частью), то центрального многообразия у неё нет. В этом случае, согласно теореме Гробмана-Хартмана , векторное поле орбитально-топологически эквивалентно своей линеаризации, то есть с топологической точки зрения динамика нелинейной системы полностью определяется линеаризацией. В случае негиперболической особой точки топология фазового потока определяется линейной частью и ограничением потока на центральное многообразие. Это утверждение, называемое принципом сведения Шошитайшвили , формулируется следующим образом:
Предположим, что правая часть векторного поля (*) принадлежит классу . Тогда в окрестности негиперболической особой точки оно орбитально-топологически эквивалентно произведению стандартного седла и ограничению поля на центральное многообразие: