Interested Article - Просто типизированное лямбда-исчисление

Просто типизированное лямбда-исчисление ( простое типизированное лямбда-исчисление , лямбда-исчисление с простыми типами , система ) — система типизированного лямбда-исчисления , в которой лямбда-абстракции приписывается специальный «стрелочный» тип. Эта система была предложена Алонзо Чёрчем в 1940 году . Для близкого к лямбда-исчислению формализма комбинаторной логики похожая система рассматривалась Хаскеллом Карри в 1934 году .

Формальное описание

Синтаксис типов и термов

В базовой версии системы типы конструируются из набора переменных с помощью единственного бинарного инфиксного конструктора . По традиции для переменных типа используют греческие буквы, а оператор считают правоассоциативным, то есть является сокращением для . Буквы из второй половины греческого алфавита ( , , и т.д.) часто используются для обозначения произвольных типов, а не только переменных типа.

Различают две версии просто типизированной системы. Если в качестве термов используются те же термы, что и в бестиповом лямбда-исчислении , то систему называют неявно типизированной или типизированной по Карри . Если же переменные в лямбда-абстракции аннотируются типами, то систему называют явно типизированной или типизированной по Чёрчу . В качестве примера приведём тождественную функцию в стиле Карри: , и в стиле Чёрча: .

Правила редукции

Правила редукции не отличаются от правил для бестипового лямбда-исчисления . -редукция определяется через подстановку

.

-редукция определяется так

.

Для -редукции требуется, чтобы переменная не была свободной в терме .

Контексты типизации и утверждения типизации

Контекстом называется множество утверждений о типизации переменных, разделённых запятой, например,

Контексты обычно обозначают прописными греческими буквами: . В контекст можно добавить «свежую» для этого контекста переменную: если — допустимый контекст, не содержащий переменной , то — тоже допустимый контекст.

Общий вид утверждения о типизации таков:

Это читается следующим образом: в контексте терм имеет тип .

Правила типизации (по Чёрчу)

В просто типизированном лямбда-исчислении приписывание типов термам осуществляется по приведённым ниже правилам.

Аксиома. Если переменной присвоен в контексте тип , то в этом контексте имеет тип . В виде правила вывода:

Правило введения . Если в некотором контексте, расширенном утверждением, что имеет тип , терм имеет тип , то в упомянутом контексте (без ), лямбда-абстракция имеет тип . В виде правила вывода:

Правило удаления . Если в некотором контексте терм имеет тип , а терм имеет тип , то применение имеет тип . В виде правила вывода:

Первое правило позволяет приписать тип свободным переменным, задав их в контексте. Второе правило позволяет типизировать лямбда-абстракцию стрелочным типом, убирая из контекста связываемую этой абстракцией переменную. Третье правило позволяет типизировать аппликацию (применение) при условии, что левый аппликант имеет подходящий стрелочный тип.

Примеры утверждений о типизации в стиле Чёрча:

(аксиома)
(введение )
(удаление )

Свойства

  • Просто типизированная система обладает свойством типовой безопасности: при -редукциях тип лямбда-терма остаётся неизменным, а сама типизация не мешает продвижению вычислений.
  • В 1967 году доказал , что -редукция для просто типизированной системы обладает свойством сильной нормализации: любой допустимый терм за конечное число -редукций приводится к единственной нормальной форме. Как следствие -эквивалентность термов оказывается разрешимой в этой системе.
  • Изоморфизм Карри — Ховарда связывает просто типизированное лямбда-исчисление с так называемой «минимальной логикой» (фрагментом интуиционистской логики высказываний , включающим только импликацию ): населённые типы являются в точности тавтологиями этой логики, а термы соответствуют доказательствам, записанным в форме естественного вывода.

Примечания

  1. A. Church. A Formulation of the Simple Theory of Types // J. Symbolic Logic. — 1940. — С. 56-68 .
  2. H. B. Curry. Functionality in Combinatory Logic // Proc Natl Acad Sci USA. — 1934. — С. 584–590 .
  3. W. W. Tait. Intensional Interpretations of Functionals of Finite Type I // J. Symbolic Logic. — 1967. — Т. 32(2) .

Литература

  • Pierce, Benjamin C. Types and Programming Languages. — MIT Press , 2002. — ISBN 0-262-16209-1 .
    • Перевод на русский язык: Пирс Б. Типы в языках программирования. — , 2012. — 680 с. — ISBN 978-5-7913-0082-9 .
  • Barendregt, Henk. // Handbook of Logic in Computer Science. — Oxford University Press, 1992. — Т. II . — С. 117-309 .
Источник —

Same as Просто типизированное лямбда-исчисление