Interested Article - R-функция

R-функция (функция Рвачёва ) — числовая функция действительных переменных, знак которой вполне определяется знаками её аргументов при соответствующем разбиении числовой оси на интервалы и . Впервые R-функции были введены в работах В. Л. Рвачёва . В отличие от классической аналитической геометрии теория R-функций занимается синтезом задач и уравнений с известными свойствами.

Для изучения R-функций надо знать не только классическую аналитическую геометрию, но и теорию множеств.

Определение

Числовая функция называется R-функцией, если существует такая сопровождающая булева функция с тем же числом аргументов, что

Аналогично вводится понятие R-функции при количестве аргументов

Каждой R-функции соответствует единственная сопровождающая булева функция. Обратное неверно: одной и той же булевой функции соответствует бесконечное число (ветвь) R-функций.

Множество R-функций замкнуто в смысле суперпозиции R-функций. Система R-функций называется достаточно полной , если множество всех суперпозиций элементов (множество -реализуемых функций) имеет непустое пересечение с каждой ветвью множества R-функций. Достаточным условием полноты является полнота системы соответствующих сопровождающих булевых функций.

Полные системы R-функций

Наиболее часто используемой полной системой R-функций является система (при ):

При имеем систему :

При имеем систему :

В последнем случае R-функции конъюнкции и дизъюнкции совпадают с соответствующими t-нормой и t-конормой нечёткой логики :

Приложения

С помощью R-функций оказывается возможным построение в неявной форме уравнений границ составных областей по известным уравнениям простых областей. Описание границы сложной области в виде единого аналитического выражения позволяет создавать структуры решения краевых задач математической физики , зависящие от неопределённых компонент и точно удовлетворяющие граничным условиям . Неопределённые компоненты таких структур могут далее находиться одним из вариационных или проекционных методов решения краевых задач (коллокации, Рэлея—Ритца , Бубнова—Галёркина—Петрова , наименьших квадратов ). Метод решения краевых задач для уравнений в частных производных на основе теории R-функций носит название структурного метода R-функций или, в зарубежной литературе, RFM (R-Functions Method).

R-функции можно рассматривать как инструмент бесконечнозначной логики или нечёткой логики .

R-функции используются (в основном воспитанниками научной харьковской школы) при решении широкого класса задач математической физики ( теории упругости , электродинамики , теории теплопроводности ), а также в многомерной цифровой обработке сигналов и изображений , машинной графике и других областях.

Применение теории R-функций и вейвлетов к решению краевых задач  математической физики

В работе профессора В.Ф. Кравченко и его ученика А.В. Юрина предложен и обоснован новый метод, основанный на теории R-функций и WA-систем функций (вейвлетов, построенных на основе атомарных функций), с применением вариационного принципа Галеркина-Петрова.

При рассмотрении широкого класса краевых задач различной физической природы возникает необходимость в решении дифференциальных уравнений в частных производных, в которых исследуемая область имеет сложную конфигурацию. В таких случаях, как правило, используются численные методы: сеточные (метод конечных разностей, конечных элементов, граничных элементов), вариационные и проекционные (метод Ритца, Бубнова-Галеркина-Петрова, коллокаций, Трефтца, метод наименьших квадратов, метод фиктивных областей , R-функций). Однако, каждый из них имеет свои преимущества и недостатки. Так, сеточные методы обладают большой эффективностью алгоритма (за счет чего и получили широкое распространение), но при этом не точно учитывают геометрию исследуемого объекта. В случае вариационных методов не всегда можно построить базисные функции, которые удовлетворяли бы  всем требуемым условиям. Поэтому их использование ограничено. Следует особо выделить метод R-функций , обладающий геометрической гибкостью и универсальностью по отношению к выбранному способу минимизации функционала. Применение такого подхода требует значительных вычислительных затрат. Это обусловлено использованием структурных формул, в основе которых лежат построенные с помощью R-операций функции области. Такие функции могут иметь сложную структуру, а для вычисления интегралов от них по области нестандартной формы необходимо использовать квадратурные формулы с высоким порядком точности. Вейвлет-базисы позволяют обойти указанные выше недостатки благодаря своим уникальным свойствам и разработать адаптивную расчетную схему без использования операции интегрирования. Такой подход возможен благодаря введению специальных коэффициентов, отражающих дифференциальные и интегральные характеристики базиса, а также коэффициентов разложения по вейвлетам функций области, краевых условий и правой части уравнения. Основным инструментом для реализации нового метода на основе R-функций и вейвлетов является схема Галеркина – Петрова решения дифференциальных уравнений в частных производных.

В работах на примере решения краевых задач эллиптического типа показана эффективность метода R-функций (функций В.Л. Рвачева) в сочетании с WA-системами функций , снимающего все недостатки, указанные ниже.

Примечания

  1. Рвачёв В. Л. Геометрические приложения алгебры логики. — Киев: Техніка, 1967.
  2. Рвачёв В. Л. Методы алгебры логики в математической физике. — Киев: Наук. думка, 1974.
  3. Рвачёв В. Л. Теория R-функций и некоторые её приложения. — Киев: Наук. думка 1982.
  4. Каледин, Валерий Олегович. Теория R-функций : учебное пособие для высших учебных заведений по направлению Прикладная математика и информатика : рек. УМО вузов РФ / В. О. Каледин, Е. В. Решетникова, В. Б. Гридчина ; Кемеровский гос. ун-т, Новокузнецкий ин-т (фил.). - 2-е изд., перераб. и доп. - Новокузнецк : НФИ КемГУ, 2017. - 119 с.
  5. Рвачёв В. Л., Курпа Л. В., Склепус Н. Г., Учишвили Л. А. Метод R-функций в задачах об изгибе и колебаниях пластин сложной формы. — Киев: Наукова думка, 1973.
  6. Рвачёв В. Л., Проценко В. С. Контактные задачи теории упругости для неклассических областей. — Киев: Наукова думка, 1977.
  7. Рвачёв В. Л., Курпа Л. В. R-функции в задачах теории пластин. — Киев: Наукова думка 1987.
  8. Рвачёв В. Л., Синекоп Н. С. Метод R-функций в задачах теории упругости и пластичности. — Киев: Наукова думка 1990.
  9. Победря Б. Е. Численные методы в теории упругости и пластичности. — М.: Изд-во МГУ, 1995.
  10. Кравченко В. Ф., Басараб М. А. Булева алгебра и методы аппроксимации в краевых задачах электродинамики. — М.: Физматлит, 2004.
  11. Кравченко В. Ф., Рвачёв В. Л. Алгебра логики, атомарные функции и вейвлеты в физических приложениях. — М.: Физматлит, 2006.
  12. В.Ф. Кравченко, А.В. Юрин. Применение теории R-функций и вейвлетов к решению краевых задач эллиптического типа. Электромагнитные волны и электронные системы. 2009. Т.14. №3. С. 4-39.
  13. Рвачев В. Л., Слесаренко А. П. Алгебро-логические и проекционные методы в задачах теплообмена. — Киев: Наук. думка, 1978.
  14. Басараб М. А., Кравченко В. Ф., Матвеев В. А. Математическое моделирование физических процессов в гироскопии. — М.: Радиотехника, 2005.
  15. Басараб М. А., Кравченко В. Ф., Матвеев В. А. Методы моделирования и цифровой обработки сигналов в гироскопии. — М.: Физматлит, 2008.
  16. Матвеев В. А., Лунин Б. С., Басараб М. А. Навигационные системы на волновых твердотельных гироскопах. — М.: Физматлит, 2008.
  17. Цифровая обработка сигналов и изображений в радиофизических приложениях / Под ред. В. Ф. Кравченко. — М.: Физматлит, 2007.
  18. В.Ф. Кравченко, О.С. Лабунько, А.М. Лерер, Г.П. Синявский. Глава 3, 4 // Вычислительные методы в современной радиофизике. Под. ред. В.Ф. Кравченко. — Москва: Физматлит, 2009.
  19. Кравченко В. Ф., Кравченко О. В., Пустовойт В. И., Чуриков Д. В., Юрин А.В. Применение семейств атомарных, WA-систем и R-функций в современных проблемах радиофизики. Часть II // Радиотехника и электроника : Обзор. — 2015. — № Т. 60. № 2 . — С. 109-148 .
  20. Кравченко В. Ф., Кравченко О. В., Пустовойт В. И., Чуриков Д. В., Юрин А.В. Применение семейств атомарных, WA-систем и R-функций в современных проблемах радиофизики. Часть IV // Радиотехника и электроника. — 2015. — Т. 60 , № 11 . — С. 1113-1152 .
  21. Добеши И. Десять лекций по вейвлетам. Ижевск: НИЦ "Регулярная и хаотическая динамика", 2001.
  22. Новиков И.Я., Протасов В.Ю., Скопина М.А. Теория всплесков. М.: Физматлит, 2006.
  23. Обэн Ж.П. Приближенное решение эллиптических краевых задач. М.: Мир, 1972.
  24. Красносельский М.А., Вайненко Г.М., Забрейко П.П., Рутицкий Я.Б., Стеценко В.Я. Приближенное решение операторных уравнений. М.: Наука, 1969.

См. также

Ссылки

Источник —

Same as R-функция