Кусочно-гладкая функция
- 1 year ago
- 0
- 0
R-функция (функция Рвачёва ) — числовая функция действительных переменных, знак которой вполне определяется знаками её аргументов при соответствующем разбиении числовой оси на интервалы и . Впервые R-функции были введены в работах В. Л. Рвачёва . В отличие от классической аналитической геометрии теория R-функций занимается синтезом задач и уравнений с известными свойствами.
Для изучения R-функций надо знать не только классическую аналитическую геометрию, но и теорию множеств.
Числовая функция называется R-функцией, если существует такая сопровождающая булева функция с тем же числом аргументов, что
Аналогично вводится понятие R-функции при количестве аргументов
Каждой R-функции соответствует единственная сопровождающая булева функция. Обратное неверно: одной и той же булевой функции соответствует бесконечное число (ветвь) R-функций.
Множество R-функций замкнуто в смысле суперпозиции R-функций. Система R-функций называется достаточно полной , если множество всех суперпозиций элементов (множество -реализуемых функций) имеет непустое пересечение с каждой ветвью множества R-функций. Достаточным условием полноты является полнота системы соответствующих сопровождающих булевых функций.
Наиболее часто используемой полной системой R-функций является система (при ):
При имеем систему :
При имеем систему :
В последнем случае R-функции конъюнкции и дизъюнкции совпадают с соответствующими t-нормой и t-конормой нечёткой логики :
С помощью R-функций оказывается возможным построение в неявной форме уравнений границ составных областей по известным уравнениям простых областей. Описание границы сложной области в виде единого аналитического выражения позволяет создавать структуры решения краевых задач математической физики , зависящие от неопределённых компонент и точно удовлетворяющие граничным условиям . Неопределённые компоненты таких структур могут далее находиться одним из вариационных или проекционных методов решения краевых задач (коллокации, Рэлея—Ритца , Бубнова—Галёркина—Петрова , наименьших квадратов ). Метод решения краевых задач для уравнений в частных производных на основе теории R-функций носит название структурного метода R-функций или, в зарубежной литературе, RFM (R-Functions Method).
R-функции можно рассматривать как инструмент бесконечнозначной логики или нечёткой логики .
R-функции используются (в основном воспитанниками научной харьковской школы) при решении широкого класса задач математической физики ( теории упругости , электродинамики , теории теплопроводности ), а также в многомерной цифровой обработке сигналов и изображений , машинной графике и других областях.
В работе профессора В.Ф. Кравченко и его ученика А.В. Юрина предложен и обоснован новый метод, основанный на теории R-функций и WA-систем функций (вейвлетов, построенных на основе атомарных функций), с применением вариационного принципа Галеркина-Петрова.
При рассмотрении широкого класса краевых задач различной физической природы возникает необходимость в решении дифференциальных уравнений в частных производных, в которых исследуемая область имеет сложную конфигурацию. В таких случаях, как правило, используются численные методы: сеточные (метод конечных разностей, конечных элементов, граничных элементов), вариационные и проекционные (метод Ритца, Бубнова-Галеркина-Петрова, коллокаций, Трефтца, метод наименьших квадратов, метод фиктивных областей , R-функций). Однако, каждый из них имеет свои преимущества и недостатки. Так, сеточные методы обладают большой эффективностью алгоритма (за счет чего и получили широкое распространение), но при этом не точно учитывают геометрию исследуемого объекта. В случае вариационных методов не всегда можно построить базисные функции, которые удовлетворяли бы всем требуемым условиям. Поэтому их использование ограничено. Следует особо выделить метод R-функций , обладающий геометрической гибкостью и универсальностью по отношению к выбранному способу минимизации функционала. Применение такого подхода требует значительных вычислительных затрат. Это обусловлено использованием структурных формул, в основе которых лежат построенные с помощью R-операций функции области. Такие функции могут иметь сложную структуру, а для вычисления интегралов от них по области нестандартной формы необходимо использовать квадратурные формулы с высоким порядком точности. Вейвлет-базисы позволяют обойти указанные выше недостатки благодаря своим уникальным свойствам и разработать адаптивную расчетную схему без использования операции интегрирования. Такой подход возможен благодаря введению специальных коэффициентов, отражающих дифференциальные и интегральные характеристики базиса, а также коэффициентов разложения по вейвлетам функций области, краевых условий и правой части уравнения. Основным инструментом для реализации нового метода на основе R-функций и вейвлетов является схема Галеркина – Петрова решения дифференциальных уравнений в частных производных.
В работах на примере решения краевых задач эллиптического типа показана эффективность метода R-функций (функций В.Л. Рвачева) в сочетании с WA-системами функций , снимающего все недостатки, указанные ниже.