Interested Article - Задача Ситникова

Конфигурация тел в задаче Ситникова

Задача Ситникова — вариант задачи трёх тел , названный по фамилии советского математика Кирилла Александровича Ситникова и касающийся движения трёх тел под действием взаимного гравитационного притяжения. Частный случай задачи Ситникова рассмотрел в 1911 году американский учёный Уильям МакМиллан, но в современном смысле задача была исследована Ситниковым в 1961 году.

Определение

Система состоит из двух главных тел с одинаковой массой , двигающихся по круговой или эллиптической кеплеровой орбите вокруг общего центра масс. Третье тело значительно меньше главных тел, его массу можно считать нулевой , оно движется под действием главных тел в плоскости, перпендикулярной плоскости орбиты главных тел. Начало координат системы находится в центре масс. Суммарная масса главных тел , орбитальный период равен , большая полуось орбиты главных тел . Гравитационная постоянная в выбранной системе единиц равна 1. В данной задаче третье тело двигается вдоль одного направления — оси z.

Уравнение движения

Для получения уравнений движения в случае круговых орбит главных тел используем выражение для полной энергии :

После дифференцирования по времени уравнение имеет вид

Также справедливо равенство

Следовательно, уравнение движения представимо в виде

который описывает точно решаемую систему , поскольку она обладает только одной степенью свободы и допускает интеграл движения — энергию.

Если же главные тела двигаются по эллиптическим орбитам, то уравнение движения имеет вид

где — расстояние от главного тела до общего центра масс. В таком случае система обладает 1,5 степенями свободы и является хаотической.

Значение

Хотя почти невозможно в реальности обнаружить или создать такую систему трёх небесных тел, которая рассматривается в задаче Ситникова, всё же задача имеет важное значение: хотя она и представляет собой простой случай задачи трёх тел, но при решении задачи можно столкнуться с различными характеристиками хаотических систем .

См. также

Примечания

Литература

  • K. A. Sitnikov: The existence of oscillatory motions in the three-body problems . In: Doklady Akademii Nauk SSSR , 133/1960, pp. 303–306, ISSN (English Translation in Soviet Physics. Doklady. , 5/1960, S. 647–650)
  • K. Wodnar: The original Sitnikov article – new insights . In: Celestial Mechanics and Dynamical Astronomy , 56/1993, pp. 99–101, ISSN ,
  • D. Hevia, F. Rañada: Chaos in the three-body problem: the Sitnikov case . In: European Journal of Physics , 17/1996, pp. 295–302, ISSN ,
  • Rudolf Dvorak, Florian Freistetter, J. Kurths, Chaos and Stability in Planetary Systems. , Springer, 2005, ISBN 3540282084
  • J. Moser: "Stable and Random Motion", Princeton Univ. Press, 1973, ISBN 978-0691089102
Источник —

Same as Задача Ситникова