Interested Article - Электрохимическая обработка

Электрохимическая обработка (ЭХО) — способ обработки электропроводящих материалов, заключающийся в изменении формы, размеров и (или) шероховатости поверхности заготовки вследствие анодного растворения её материала в электролите под действием электрического тока.

Виды электрохимической обработки

Электрохимическое объемное копирование — Электрохимическая обработка, при которой форма электрода-инструмента отображается в заготовке

Электрохимическое прошивание — Электрохимическая обработка, при которой электрод-инструмент, углубляясь в заготовку, образует отверстие постоянного сечения

Струйное электрохимическое прошивание — Электрохимическое прошивание с использованием сформированной струи электролита

Электрохимическое калибрование — Электрохимическая обработка поверхности с целью повышения её точности

Электрохимическое точение — Электрохимическая обработка, при вращении заготовки и поступательном перемещении электрода-инструмента

Электрохимическая резка — Электрохимическая обработка, при которой заготовка разделывается на части

Электрохимическое удаление заусенцев (ЭХУЗ, Electrochemical debuting) — Электрохимическая обработка, при которой удаляются заусенцы заготовки

Электрохимическое маркирование

Многоэлектродная электрохимическая обработка — Электрохимическая обработка осуществляемая электродами, подключенными к общему источнику питания электрическим током и находящимися во время обработки под одним потенциалом

Непрерывная электрохимическая обработка — Электрохимическая обработка при непрерывной подаче напряжения на электроды

Импульсная электрохимическая обработка — Электрохимическая обработка при периодической подаче напряжения на электроды

Циклическая электрохимическая обработка — Электрохимическая обработка, при которой один из электродов перемещается в соответствии с заданной циклограммой,

а также другие смешанные виды электрофизикохимической обработки (ЭФХМО) включающие ЭХО: [ источник не указан 1849 дней ]

  • анодно-механическая обработка;
  • электрохимическая абразивная обработка ;
  • электрохимическое шлифование ;
  • электрохимическая доводка (ЭХД);
  • электрохимическое абразивное полирование ;
  • электроэрозионнохимическая обработка (ЭЭХО);
  • электрохимическая ультразвуковая обработка и др.

Физико-химическая сущность метода

Механизм съёма (растворения, удаления металла) при электрохимической обработке основан на процессе электролиза . Съём металла происходит по закону Фарадея , согласно которому количество снятого металла пропорционально силе тока и времени обработки. Один из электродов (заготовка) присоединен к положительному полюсу источника питания и является анодом , а второй (инструмент) — к отрицательному; последний является катодом .

Особенностями электролиза являются пространственное окисление (растворение) анода и восстановление (осаждение) металла на поверхности катода. При ЭХО применяют такие электролиты, катионы которых не осаждаются при электролизе на поверхности катода. Этим обеспечивается основное достоинство ЭХО перед электроэрозионной обработкой — неизменность формы электрода-инструмента. Для стабилизации электродных процессов при ЭХО и удаления из межэлектродного промежутка продуктов растворения (шлама) применяют принудительную подачу в рабочую зону электролита, то есть прокачивают его с определенным давлением.

История развития электрохимической обработки (ЭХО)

Копировально-прошивочный электрохимический станок ET 3000
Электрохимический станок ЕТ6000-3D
Пример штампа, изготовленного на электрохимическом станке ЭХФ-А1
  • 1911 г. Приоритет открытия методов электрохимической обработки металлов принадлежит русским учёным. Своё начало электрохимическая обработка берёт от процесса электрохимического полирования, предложенного ещё в 1911 г. известным русским химиком Е. И. Шпитальским.
  • 1928 г. Первые опыты В. Н. Гусева по интенсификации обработки деталей машин привели к тому, что ещё в 1928 г. удалось осуществить электрохимическую обработку станин крупных металлорежущих станков . Тогда-то и было предложено В. Н. Гусевым (в соавторстве с Л. А. Рожковым) вести процесс ЭХО на узких МежЭлектродныхПромежутках (до десятых долей миллиметра) с принудительной прокачкой электролита (А. С. № 28384 от 21.03.28г.).
  • 1941-1945 гг. В. Н. Гусеву, его сотрудникам Е. А. Дрозду, И. Я. Богораду и другим удалось разработать анодно-механический метод обработки.
  • 1947-1950 гг. В эти годы определились три разновидности обработки металлов, использующей электрохимические явления: размерная электрохимическая, анодно-механическая и анодно-абразивная. В 1948 г. в лаборатории В. Н. Гусева была создана электрохимическая установка для обработки в потоке электролита, которая впервые была применена для изготовления отверстий в броневой стали . Тогда же были проведены первые опыты по обработке турбинных лопаток. Через несколько лет в нашей стране впервые в мировой практике было осуществлено промышленное внедрение операций электрохимического формообразования.
  • 1962 г. Создание технологического процесса снятия заусенцев разработанного в ЭНИМСе В. Ю. Вероманом, И. А. Байсуповым и др.
  • 1963 г. А. Н. Голдобиным, Ю. И. Коптеевым и др. было предложено сложно-контурное вырезание электродом- проволокой.
  • 60-е гг. В СССР была создана гамма электрохимических станков для снятия заусенцев, плоскошлифовальных, для двусторонней обработки и копировально-прошивочных, работающих на постоянном токе . (Каталог-справочник. Электрофизические и электрохимические станки. М. 1969 г.)
  • 65-68 гг. В 1965 г. начал выходить журнал «Электронная обработка материалов», а с 1968 г. «Электрофизические и электрохимические методы обработки».
  • 70-80-е гг. Появилась возможность перейти на импульсные и импульсно-циклические методы обработки. В эти годы в Советском Союзе работали научные центры по развитию ЭХО на базе академической науки, отраслевых НИИ, высших учебных заведений, крупных промышленных предприятий в городах: Москве, Кишинёве, Туле, Ленинграде, Иваново, Казани, Куйбышеве, Ереване, Уфе, Новосибирске и т. д. Регулярно проводились Отраслевые, Всесоюзные и Международные конференции по электрофизическим и электрохимическим методам обработки. В Советском союзе были созданы и внедрены в производство электрохимические копировально-прошивочные станки: 4412, 4412ФЦ, 4420, 4420Ф4, 4420ФЦ, 4420Ф11, 4А420/Ф11, 4А420/Ф3, 4а420/Ф3М, 4421, 4421ФЦ, 4422, 4423, 4423ФЦ, МА4423, 4А423ФЦ, 4424, МА4424, АГЭ-10, АГЭ-11, АТ-80, АТ-90, СЭП902, СЭП902М, СЭП902МА, СЭП902П, СЭП902А, СЭХО-4А, СЭХО-41, Э-402, Э-460, Э-468, ЭГС-2, ЭГС-29, ЭКУ-150, ЭКУ-151, ЭКУ-152, ЭКУ-400, ЭКУ-1503, ЭРО-120, ЭХС-12М и др. В 1986 году в СССР вышел новый каталог-справочник «Электрофизические и электрохимические станки» В Советском Союзе были проведены глубокие исследования теории процесса ЭХО ( Ф. В. Седыкин , Ю. Н. Петров, В. Д. Кащеев и др.) Значительные успехи в разработке теоретических основ и совершенствовании технологии получены также В. П. Смоленцевым, И. И. Морозом, Д. З. Митяшкиным, Д. Т. Васильевым, Л. Б. Дмитриевым, Г. Н. Знигерманом, В. В. Бородиным, Г. Н. Зайдманом , В. А. Шманёвым, Ю. В. Головачёвым, В. Г. Филимошиным, А. К. Журавским, Д. Я. Длугачем, Г. А. Алексеевым, В. В. Любимовым, В. Ф. Орловым, Б. И. Чугуновым, Б. Н. Кабановым, Я. М. Колотыркиным, А. Г. Атанасянцем, А. И. Дикусаром, Г. С. Доменте, Г. Р. Энгельгардтом и др. В этот период разработкой электрохимических станков занимались во многих странах мира: США (Chem-Form Ex-Cell-0, Cincinnati Milling Co, Anocut Eng), Великобритании (Mechem), Франции (Qualitex), Чехословакии (Vuma), Нидерландах (Philips), Японии (Mitsubishi Electric Co, Hitachi Ltd), Швейцарии (Chamilles), ФРГ (R. Bosch, AEG-ELOTHERM).
  • 1986 г. В городе Туле прошла последняя в Советском Союзе VI Всесоюзная научно-техническая конференция «Электрохимическая размерная обработка деталей машин». При этом на внешне благополучном фоне «громом среди ясного неба» прозвучала информация во вступительном слове председателя Я. М. Колотыркина о том, что на Западе сворачиваются все разработки, связанные с электрохимической размерной обработкой, и усилия направляются на эрозионную обработку, так как на Западе увлеклись обработкой на постоянном токе, а электрохимическое оборудование оставалось громоздким, энергоёмким и зачастую уже не соответствовало возросшим требованиям по точности формообразования.
  • 1988 г. Создание и внедрение в производство электрохимического станка ЭС-4000 с площадью обработки до 40 см², конкурентоспособного по точности обработки по отношению к электроэрозионным станкам.
  • 90-е гг. Сотни станков ЭС-4000 внедрены в производство в России и за рубежом. Работа на Международных выставках серии ЕМО (Милан, Ганновер, Париж) показала отсутствие на рынке подобного оборудования.
  • 1998 г. Разработка нового электрохимического станка ЭС-80 с площадью обработки до 80 см².
  • В 80-е — 90-е годы развитие получили более совершенные схемы импульсной и импульсно-циклической обработки в пассивирующих кислородосодержащих электролитах (водные растворы NaNO 3 , KNO 3 , NaClO 3 , Na 2 SO 4 , и т. п.), позволившие снизить погрешность обработки до 0,02…0,05 мм и шероховатость до Ra 0,2…0,4 мкм.

В начале XXI века наблюдается возросший интерес к электрохимическому формообразованию. Появляются фирмы, как в России, так и за рубежом по разработке нового оборудования. В связи с появлением высокотехнологичных отраслях промышленности (точного приборостроения, медицины и медицинской техники, авиадвигателестроения и др.) новых групп высокопрочных и твёрдых материалов (в том числе наноструктурированных), усложнением формы деталей и ужесточением требований к качеству поверхностного слоя, возникла потребность в новых технологиях электрофизической и электрохимической обработки. Реакцией на этот запрос технического прогресса явилось появление в 1998—2011 годах целого комплекса новых способов биполярной микросекундной ЭХО вибрирующим электродом, предложенных авторским коллективом ООО «ЕСМ» (г. Уфа, Россия). Особенностью этих способов состоит в том, что они осуществляются на сверхмалых (3…10 мкм) межэлектродных зазорах с использованием групп импульсов тока высокой плотности (порядка 10²…10 4 А/см²). При их реализации становится достижимым обеспечение малых погрешностей (0,001..0,005 мм) обработки, создание на поверхностях деталей регулярных макро- и микрорельефов с в микронном и субмикронном диапазоне, и получение оптически гладких поверхностей (Ra 0,1..0,01 мкм). И все это при существенно более высокой (в сравнении с конкурирующим технологиями) производительностью на финишных операциях.

1989-2003 гг. производство серийных станков ЭС-4000, ЭС-80.

2003 г. Запущены в серийное производство электрохимические прошивные станки SFE-4000M и SFE-8000M

  • 2008—2012 Гамма прецизионных электрохимических копировально — прошивочных станков: ЕТ500, ЕТ1000, ЕТ3000, ЕТ6000-3D (трёхкоординатный станок)
  • 2010: системы ЕТ-ЕСО экологической чистоты электрохимической технологии для всех типов электрохимических станков
  • 2011—2012 специальные электрохимические станки sET8000-2D и sET6000-3D для обработки лопаток авиационных двигателей и блисков
  • 2014 г. Серийное производство электрохимических копировально-прошивных станков SFE-5000M
  • 2017 г. Серийное производство электрохимических копировально-прошивных станков SFE-12000M с площадью обработки до 120 кв.см. [ источник не указан 1849 дней ]

Электрохимический станок

Технологические установки для реализации процесса ЭХО как правило являются узкоспециализированными под определенный технологический процесс, в связи с низкой производительностью (в сравнении с другими методами формообразования: механическая обработка, электроэрозионная обработка ) и сложностью процесса. Однако ЭХО обладает рядом уникальных технологических свойств (постоянство формы обрабатывающего электрода, обработка твёрдых и хрупких токопроводящих сплавов, обработка которых механическими методами резания и шлифования невозможна, или низко производительна, минимальные нагрузки на обрабатываемую заготовку позволяют обрабатывать тонкостенные, ажурные детали, отсутствие измененного слоя в детали после обработки (оплавление, наклёп, термоупрочнение) поверхностного слоя, возможность подвода исполнительного органа (электрода) в труднодоступные полости и отверстия деталей) которые позволяют осуществлять обработку деталей, неосуществимую другими известными методами обработки.

Широкое распространение электрохимические станки получили в авиационной промышленности. Распространены установки для получения рабочей поверхности пера лопатки турбореактивных двигателей (лопаточные станки), данные станки позволяют получать готовые изделия с минимальным применением доводочных, слесарных операций, требующих больших затрат времени и высококвалифицированного персонала. Именно по этим причинам большинство специализированных электрохимических установок уникально и изготавливается в единичном числе.

Однако, распространены и универсальные электрохимические станки, выпускаемые серийно, как правило, это копировально-прошивочные станки, позволяющие обрабатывать широкую номенклатуру деталей прямым копированием. Данные станки обладают одной координатой Z (которая осуществляет формообразование) иногда снабжаются дополнительными координатами (X и Y) для настройки и базирования взаимного расположения электрода и обрабатываемой поверхности в заготовке. Данные станки широко применяются в инструментальной промышленности для обработки штампов, пуансонов и других твёрдосплавных формообразующих технологических элементов. [ источник не указан 1849 дней ]

Литература

  • Справочник по электрохимическим и электрофизическим методам обработки//Г. Л. Амитан, И. А. Байсупов, Ю. М. Барон и др.; Под общ. ред. В. А. Волосатова.-Л.: Машиностроение. Л, 1988.-719с.: ил. ISBN 5-217-00267-0
  • Житников В. П., Зайцев А. Н. Импульсная электрохимическая размерная обработка.-М.: Машиностроение, 2008- 413с. ISBN 978-5-217-03423-9
  • ГОСТ 25330-82 Обработка электрохимическая. Термины и определения
  • / А. Д. Давыдов // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов . — М. : Большая российская энциклопедия, 2004—2017.

Ссылки

Примечания

Источник —

Same as Электрохимическая обработка