Interested Article - Критерий Попова
- 2021-06-28
- 2
Критерий По́пова — условие абсолютной устойчивости нелинейной системы управления c нелинейностью, лежащей в секторе.
Формулировка критерия
Рассматривается следующая система управления :
где , , — матрицы подходящих размерностей, — нелинейная функция со значениями в . Предполагается, что
- матрица — гурвицева ,
- пара управляема ,
- пара наблюдаема ,
- функция лежит в секторе для некоторого положительного числа , то есть
Тогда если найдётся такое неотрицательное число , что число не является собственным числом и
где — передаточная функция системы, то система абсолютно устойчива, то есть она равномерно асимптотически устойчива с любой нелинейностью , удовлетворяющей секторному условию .
С использованием формулы можно привести указанное неравенство к следующему виду:
Если построить график левой части неравенства как функции от , используя в качестве оси абсцисс , а в качестве оси ординат , то неравенство будет выполняться, если график будет лежать справа от прямой, проходящей через точку с угловым коэффициентом . Такой способ изображения называется годографом Попова (сравни с годографом Найквиста ) .
Примечания
- , p. 400.
- , p. 403.
- , p. 421.
- , p. 422.
Литература
- Khalil, H. K. . Nonlinear systems (англ.) . — 2nd ed. — Upper Saddle River, NJ: Prentice Hall , 1996. — ISBN 0-13-228024-8 .
См. также
- 2021-06-28
- 2