Визуализация графов
- 1 year ago
- 0
- 0
В информатике переписывание графов (также перезапись графов , преобразование графов , трансформация графов ) — техника по созданию нового графа из исходного графа алгоритмическим образом. Переписывание графов находит широкое применение в компьютерных науках, например, в конструировании программного обеспечения , в , в генерировании изображений, в компиляторах , в графовых базах данных .
Преобразования графов можно использовать в качестве абстракции вычислений. Основная идея заключается в том, что состояние вычисления может быть представлено в виде графа, дальнейшие шаги этого вычисления могут быть представлены как правила преобразования на этом графе. Такие правила состоят из исходного графа, который должен быть сопоставлен с подграфом полного состояния, и заменяющего графа, который заменит сопоставленный подграф.
Формально система переписывания графа обычно состоит из множества правил переписывания графа в форме , где называется графом-образцом (или левой стороной), а называется заменяющим графом (или правой частью правила). Правило переписывания графа применяется к исходному графу путем поиска вхождения шаблонного графа ( сопоставление с образцом , тем самым решая проблему изоморфизма подграфа ) и замены найденного вхождения экземпляром заменяющего графа. Правила переписывания могут быть дополнительно упорядочены в случае помеченных графов , например, в графовых грамматиках, регулируемых строками.
Иногда понятие графовой грамматики используется в качестве синонима для системы переписывания графа, особенно в контексте формальных языков ; различные формулировки используются, чтобы подчеркнуть цель конструкций, таких как перечисление всех графов из некоторого начального графа, то есть генерация графового языка – вместо простого преобразования исходного состояния (хостового графа) в новое состояние.
Алгебраический подход к переписыванию графов основан на теории категории . Алгебраический подход подразделяется на субподходы, наиболее распространенными из которых являются подход и подход . Другие подходы включают sesqui-pushout и pullback .
С точки зрения подхода DPO правило переписывания графа это пара морфизмов в категории графов и гомоморфизмы графа между ними: (или ), где инъективно . Граф называется инвариантным или иногда склеивающим графом . Шаг переписывания или применение правила к исходному графу определяется двумя диаграммами кодекартова квадрата , обе ведущими в один и тот же морфизм , где это контекстный граф (откуда и происходит название double -pushout). Другой морфизм графа моделирует вхождение в и называется сопоставлением . Практическим пониманием этого является то, что является подграфом, который сопоставляется из (смотри задачу поиска изоморфного подграфа ), и после того, как совпадение найдено, заменяется на в исходном графе , где служит интерфейсом, содержащим узлы и рёбра, которые при применении правила были сохранены. Граф необходим для того, чтобы присоединить образец, сопоставляющийся его контексту: если он пуст, совпадение может обозначать только весь связанный компонент графа .
Правило переписывания графа в подходе SPO это единственный морфизм в категории помеченных мультиграфов и частичных отображений, которые сохраняют структуру мультиграфа: . Таким образом шаг переписывания определяется одной диаграммой кодекартова квадрата . Практическое понимание этого аналогично подходу DPO. Разница в том, что нет интерфейса между исходным графом и графом , являющимся результатом шага переписывания.
С практической точки зрения ключевое различие между DPO и SPO заключается в том, как они относятся к удалению узлов со смежными рёбрами, в частности, как они избегают того, чтобы такие удаления могли оставить после "висячие рёбра". Подход DPO удаляет узел только тогда, когда правило определяет удаление всех смежных рёбер, а также (это условие для висячих может быть проверено для данного сопоставления), в то время как подход SPO просто размещает смежные рёбра, не требуя явной спецификации.
Существует также другой алгебраический подход к переписыванию графов, основанный в основном на булевой алгебре и алгебре матриц, называющийся матричными графовыми грамматиками .
Еще один подход к переписыванию графов, известный как детерминированное переписывание графов, вышел из логики и . В этом подходе графы рассматриваются как экземпляры базы данных, а операции переписывания как механизм для определения запросов и представлений; поэтому всё переписывание требуется для получения уникальных результатов ( изоморфизма), и это достигается применением любого правила переписывания одновременно по всему графу, где бы оно ни применялось, таким образом, что результат действительно однозначно определен.
Другим подходом к переписыванию графов является переписывание абстрактного семантического графа (АСГ) , который предполагает обработку или преобразование АСГ посредством набора синтаксических правил переписывания.
Абстрактные семантические графы являются важным вопросом в исследованиях языков программирования, поскольку правила переписывания АСГ способны формально выражать операционную семантику компилятора. АСГ также используются в качестве приспособления абстрактной машины к моделированию химических и биологических вычислений, а также графических вычислений, таких как параллельные модели. АСГ может осуществлять автоматическую проверку (верификацию) и логическое программирование, так как они хорошо подходят к представлению количественных высказываний в логике первого порядка. Программное обеспечение для символического программирования -- другое приложение для АСГ, которое способно представлять и выполнять вычисления с абстрактными алгебраическими структурами, такими как группы, поля и кольца.
Конференция TERMGRAPH полностью фокусируется на исследованиях в области АСГ и их приложениях.
Системы переписывания графов, естественно, группируются в классы в зависимости от используемых видов представлений графов, и того как выражены переписывания. Грамматика абстрактного семантического графа, в противном случае эквивалентно системе переписывания графов или системе замены графов, наиболее часто используется в классификациях. Некоторые общие типы:
Графы являются выразительным, визуально и математически точным формализмом моделирования объектов (субъектов), связанных отношениями; объекты представлены в виде узлов, а отношения между ними рёбрами. Узлы и ребра обычно типизированы и атрибутированы. Вычисления описываются в этой модели как изменения в отношениях между субъектами или как изменения атрибутов элементов графа. Они кодируются в правилах переписывания графов или преобразования графов и исполняются с помощью инструментов переписывания графов/преобразования графов.
{{
citation
}}
:
Указан более чем один параметр
|ISBN=
and
|isbn=
(
справка
)
.
{{
citation
}}
:
Указан более чем один параметр
|ISBN=
and
|isbn=
(
справка
)
.