Interested Article - Сложное движение

Пример сложного движения

В физике , при рассмотрении нескольких систем отсчёта (СО), возникает понятие сложного движения — когда материальная точка движется относительно какой-либо системы отсчёта, а та, в свою очередь, движется относительно другой системы отсчёта. При этом возникает вопрос о связи движений точки в этих двух системах отсчета (далее СО).

Геометрия задачи

Материальная точка в двух СО .

Обычно принимают одну из СО за базовую («абсолютную», «лабораторную», «неподвижную», «СО неподвижного наблюдателя», «первую», «нештрихованную» и т. п.), другую называют «подвижной» («СО подвижного наблюдателя», «штрихованной», «второй» и т. п.) и вводят следующие термины:

  • абсолютное движение — это движение материальной точки /тела в базовой СО. В этой СО радиус-вектор тела будем обозначать , а скорость тела — ;
  • относительное движение — это движение материальной точки/тела относительно подвижной системы отсчёта. В этой СО радиус-вектор тела — , скорость тела — ;
  • перено́сное движение — это движение подвижной системы отсчета и всех постоянно связанных с нею точек пространства относительно базовой системы отсчета. Переносное движение материальной точки — это движение той точки подвижной СО, в которой в данный момент времени находится эта материальная точка. Радиус-вектор начала системы координат подвижной СО — , его скорость — , угловая скорость вращения подвижной системы отсчета относительно базовой — . Если эта угловая скорость равна нулю, говорят о поступательном движении подвижной СО.

Переносная скорость — это скорость в базовой системе отсчёта произвольной точки, зафиксированной относительно подвижной СО, обусловленная движением этой подвижной СО относительно базовой. Например, это скорость той точки подвижной системы отсчёта, в которой в данный момент времени находится материальная точка. Переносная скорость равна только в тех случаях, когда подвижная СО движется поступательно .

Вводятся также понятия соответствующих ускорений , , , и .

С точки зрения только чистой кинематики (задачи пересчёта кинематических величин — координат, скоростей, ускорений — от одной системы отсчета к другой) не имеет значения, является ли какая-то из систем отсчета инерциальной или нет; это никак не сказывается на формулах преобразования кинематических величин при переходе от одной системы отсчета к другой (то есть эти формулы можно применять и для перехода от одной произвольной неинерциальной вращающейся системы отсчета к другой).

Однако для динамики инерциальные системы отсчета имеют особое значение: в них механические явления описываются наиболее простым образом и, соответственно, уравнения динамики формулируются изначально именно для инерциальных систем отсчета . Поэтому особенно важны случаи перехода от инерциальной системы отсчета к другой инерциальной, а также от инерциальной к неинерциальной и обратно.

В дальнейшем изложении по умолчанию базовая СО предполагается инерциальной , а на подвижную никаких ограничений не накладывается.

Классическая механика

Классическая механика опирается на представления о Евклидовом пространстве и принцип относительности Галилея , что позволяет использовать преобразования Галилея .

Кинематика сложного движения точки

Траектории одного и того же движения в разных системах отсчёта.
Вверху (в инерциальной системе): дырявое ведро с краской двигают на колосниках по прямой над поворачивающейся театральной сценой. Траектория прямая.
Внизу (в неинерциальной системе): то же самое, но при взгляде с точки зрения наблюдателя, стоящего на вращающейся сцене. Траектория кривая, и соответствует следу от краски на сцене.

Кинематика движения, основанная на анализе траектории движущегося тела, в общем случае не даёт полной информации для классификации этих движений. Так, движение по прямой в неинерциальной системе отсчёта может быть криволинейным (и, следовательно, обусловленным действующими на тело силами) в инерциальной СО. И, наоборот, прямолинейное в инерциальной СО может быть криволинейным в неинерциальной, и, следовательно, провоцировать представление о якобы действующих на тело силах.

Путь

Абсолютное движение и его путь представлены изменением радиуса вектора , рассматриваемого в виде суммы векторов переносного и относительного движений:

Скорость

Основные задачи кинематики сложного движения заключаются в установлении зависимостей между кинематическими характеристиками абсолютного и относительного движений точки (или тела) и характеристиками движения подвижной системы отсчета, то есть переносного движения. Связь скоростей определяется дифференцированием связи для положений. Для точки эти зависимости являются следующими: абсолютная скорость точки равна геометрической сумме относительной и переносной скоростей, то есть:

Данное равенство представляет собой содержание теоремы о сложении скоростей .

Вместе с приведённым равенством всегда справедливо и соотношение

Однако в общем случае в этом соотношении не является переносной скоростью, а не относительная скорость. Таковыми они становятся только в тех случаях, когда подвижная СО движется поступательно, то есть, не вращаясь .

Ускорение

Связь ускорений можно найти путём дифференцирования связи для скоростей, не забывая, что относительное перемещение также может зависеть от времени.

Абсолютное ускорение будет равно сумме:


Здесь:

  • сумма первых трех членов называется переносным ускорением .
  • первый член — переносное поступательное ускорение второй системы относительно первой,
  • второй член — переносное вращательное ускорение второй системы, возникающее из-за неравномерности её вращения.
  • третий член представляет собой вектор, противоположно направленный осестремительной составляющей вектора , перпендикулярной (что можно получить, рассматривая это двойное векторное произведение — оно равно ) и потому представляет собой осестремительное ускорение . Оно совпадает с нормальным переносным ускорением той точки вращающейся системы, с которой в данный момент совпадает движущаяся точка (не путать с нормальным ускорением движущейся точки, направленным по нормали к её траектории).
  • четвертый член есть Кориолисово ускорение , порождаемое взаимным влиянием переносного вращательного движения второй системы отсчета и относительного поступательного движения точки относительно её.
  • последний член — ускорение точки относительно подвижной системы отсчета.

Кинематика сложного движения тела

Сложное поступательное движение тела в трёхмерном пространстве

Согласно Первому закону Ньютона, все виды движений при их рассмотрении в инерциальной системе координат могут быть отнесены к одной из двух категорий. А именно — к категории прямолинейных и равномерных (то есть имеющих постоянную скорость) движений, возможных исключительно при отсутствии нескомпенсированных сил, действующих на тело. Нередко встречающееся, даже в справочной литературе , отнесение этого вида движений к категории поступательных движений противоречит определению понятия « Поступательное движение », поскольку движение, имеющее классификационный признак поступательного, в инерциальной системе может происходить по любой траектории, но не обязательно исключительно по прямой.

К другой категории относятся все остальные виды движений.

Для твёрдого тела, когда все составные (то есть относительные и переносные) движения являются поступательными , абсолютное движение также является поступательным со скоростью, равной геометрической сумме скоростей составных движений. Если составные движения тела являются вращательными вокруг осей, пересекающихся в одной точке (как, например, у гироскопа ), то результирующее движение также является вращательным вокруг этой точки с мгновенной угловой скоростью, равной геометрической сумме угловых скоростей составных движений. В общем случае движение будет слагаться из серии мгновенных .

Рассчитать взаимосвязь скоростей разных точек твёрдого тела в разных системах отсчёта можно с помощью комбинирования формулы сложения скоростей и формулы Эйлера для связи скоростей точек твёрдого тела . Связь ускорений находится простым дифференцированием полученного векторного равенства по времени.

Динамика сложного движения точки

Силы, действующие на тело, находящееся на поверхности Земли. Чертёж относится к рассмотрению сил, действующих на тело, в двух различных системах отсчёта. Первая — инерциальная система отсчёта, вторая — неинерциальная система отсчёта, связанная с вращающейся Землёй. В первом случае на тело действуют сила гравитационного притяжения и реакция опоры. Их сумма (зелёный вектор) играет роль центростремительной силы и заставляет тело вращаться вместе с Землёй. Во втором случае действует дополнительная сила — переносная сила инерции (синий вектор), в результате действие всех сил уравновешивается, и тело в этой системе отсчёта ускорения не испытывает.

Концепция Ньютона о пропорциональности получаемого телом ускорения под действием любой силы в инерциальных системах отсчёта выполняется всегда . Под силой при этом понимается мера механического действия на данное материальное тело других тел , обязательно являющаяся результатом взаимодействия тел . Альтернатив этой концепции в классическом разделе материалистической физики нет .

Однако при рассмотрении движений в неинерциальной системе отсчёта, наряду с силами, происхождение которых можно проследить, как результат взаимодействия с другими телами и полями, возможно ввести в рассмотрение и физические величины другой природы — силы инерции. Их введение и использование позволяет придать уравнению движения тел в неинерциальных системах отсчёта форму, совпадающую с формой уравнения второго закона Ньютона в инерциальных системах отсчёта.

Для того, чтобы различать силы двух упомянутых видов, термин силы инерции часто сопровождают дополнительным определением, таким, как, например фиктивные или кажущиеся .

Привлечение представлений о силах инерции для описания движения тел в неинерциальных системах отсчёта может быть полезным и эффективным. Например, действием силы инерции в системе отсчёта, связанной с вращающейся вокруг своей оси Землёй, может быть объяснён эффект замедления хода маятниковых часов, наблюдающийся по мере их приближения к экватору. Другой пример — действие силы Кориолиса на воду в реках, текущих в меридиональном направлении. Следствием такого действия является неодинаковость размыва правых и левых (по направлению течения) берегов рек. Ещё более значительным является действие силы Кориолиса на морские течения и воздушные потоки в атмосфере .

Релятивистская механика

Релятивистская механика опирается на неевклидово пространство Минковского и принцип относительности Эйнштейна , что вынуждает прибегать к более сложному преобразованию Лоренца . При скоростях, существенно меньших скорости света, релятивистская механика может быть сведена к классической.

Скорость

При скоростях, близких к скорости света, преобразования Галилея не являются точно инвариантными и классическая формула сложения скоростей перестаёт выполняться. Вместо этого, инвариантными являются преобразования Лоренца, а связь скоростей в двух инерциальных СО получается следующей:

в предположении, что скорость направлена вдоль оси х системы S. Легко убедиться, что в пределе нерелятивистских скоростей преобразования Лоренца сводятся к преобразованиям Галилея.

Однако вводится величина — быстрота — которая аддитивна при переходе от одной СО к другой.

Неинерциальные СО

Связь скоростей и ускорений в системах отсчёта, движущихся друг относительно друга ускоренно, является значительно более сложной и определяется локальными свойствами пространства в рассматриваемых точках (зависит от производной тензора Римана ).

Примечания

  1. Бронштейн И. Н., Семендяев К. А. . Справочник по математике. М.: Издательство «Наука». Редакция справочной физико-математической литературы, 1964 г., 608 стр. с ил., С.216 и далее.
  2. То есть точек, неподвижных относительно движущейся системы.
  3. Ландау Л. Д. , Лифшиц Е. М. Механика. — М. : Наука, 1988. — Т. «Теоретическая физика», том I. — С. 13—15. — 215 с. — ISBN 5-02-013850-9 .
  4. Тарг С. М. Краткий курс теоретической механики. — М. : Высшая школа, 1995. — С. 156. — 416 с. — ISBN 5-06-003117-9 .
  5. Голубев Ю. Ф. Основы теоретической механики. — М. : МГУ, 2000. — С. 119. — 720 с. — ISBN 5-211-04244-1 .
  6. Физический энциклопедический словарь/ Гл. ред. А. М. Прохоров. Ред.кол. Д. М. Алексеев, А. М. Бонч-Бруевич,А. С. Боровик-Романов и др. -М.: Сов.энциклопедия, 1983.-323 с.,ил, 2 л.цв.ил. страница 282
  7. Тарг С. М. // Физическая энциклопедия / Гл. ред. А. М. Прохоров . — М. : Большая Российская энциклопедия , 1994. — Т. 4. Пойнтинга—Робертсона эффект — Стримеры. — С. 494. — 704 с. — 40 000 экз. ISBN 5-85270-087-8 .
  8. Kleppner D., Kolenkow R. J. . — McGraw-Hill, 1973. — P. 59—60. — 546 p. — ISBN 0-07-035048-5 . 17 июня 2013 года. . Дата обращения: 17 мая 2013. Архивировано 17 июня 2013 года.
  9. Зоммерфельд А. Механика. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. — 368 с. — ISBN 5-93972-051-X .
  10. Борн М. . — М. : «Мир», 1972. — С. . — 368 с.

Литература

  • Гернет М. М. Курс теоретической механики. М.: Высшая школа.— 1973.— 464 с.
  • Четаев Н. Г. Теоретическая механика. М.: Наука.— 1987.— 368 с.
  • Тарг С. М. Относительное движение // Физическая энциклопедия / Прохоров А. М. (гл. ред.). — М. : Большая Российская энциклопедия, 1992. — Т. 3. — С. 493. — 672 с. — ISBN 5-85270-019-3 .
  • Тарг С. М. Относительное движение // Физический энциклопедический словарь / Введенский Б. А. (гл. ред.). — М. : Советская энциклопедия, 1963. — Т. 3. — С. 553. — 624 с.

Иллюстрации

Источник —

Same as Сложное движение