Interested Article - Внутренность

Вну́тренность множества — понятие в общей топологии , обозначающее объединение всех открытых подмножеств данного множества. Точки внутренности называются внутренними точками .

Определение

Пусть дано топологическое пространство где — произвольное множество , а — определённая на нём топология . Пусть также дано подмножество .

Ниже рассматривается открытость подмножеств как подмножеств всего (например, обязательно открыто как подмножество себя, но не обязательно открыто во всём топологическом пространстве), при этом явно не указывается, а открытость в нём обозначается как принадлежность .

Тогда внутренность множества можно определить несколькими эквивалентными способами:

  • Внутренность — объединение всех открытых подмножеств :
    .
  • Внутренность — наибольшее по включению открытое подмножество :
    .
Точка — внутренняя, а точка — не внутренняя (в данном случае — граничная)
  • Внутренность — множество всех внутренних точек , где точка называется внутренней тогда и только тогда, когда существует открытое множество , такое что :
    .

Эквивалентность определений следует из того факта, что объединение любого семейства открытых множеств открыто.

Свойства

  • Операция внутренности является унарной операцией на семействе всех подмножеств .
  • Внутренность открытое множество .
  • Множество открыто тогда и только тогда, когда оно совпадает со своей внутренностью:
    .
    • Иначе говоря, в открытом множестве все точки внутренние, а любое множество, все точки которого внутренние, является открытым.
  • Операция внутренности идемпотентна :
    .
  • Операция внутренности сохраняет частичный порядок подмножеств по включению:
    .
  • В метрическом пространстве определение внутренней точки принимает следующий вид. Пусть — метрическое пространство с метрикой , и — его подмножество. Точка является внутренней для тогда и только тогда, когда существует , такое что . Иначе говоря, входит в вместе с шаром радиуса с центром в .

Примеры

  • Если конечное подмножество евклидова пространства со стандартной топологией , то .
  • Если — вещественная прямая со стандартной топологией, и , то
  • Если дискретное пространство , то для любого имеем .

Вариации

Относительная внутренность

Относительной внутренностью множества называется объединение всех его открытых в его афинной оболочке подмножеств.

Квазотносительная внутренность

Алгебраическая внутренность

Литература

  • Кудрявцев Л. Д. — Математический анализ. Том 1.

См. также

Источник —

Same as Внутренность