Газотермическое напыление
- 1 year ago
- 0
- 0
Термическое упрочнение проката — повышение качества проката (фасонных профилей, арматуры, листового) за счёт термической обработки в потоке прокатного производства.
Совмещение процессов горячей деформации и ускоренного контролируемого охлаждения в процессе прокатки позволяют существенно улучшить качество металлопродукции. Теоретические основы такого процесса разработаны научной школой МИСиС под руководством М. Л. Бернштейна . Существенный вклад в исследование процессов ВТМО внесли работы , Л. М. Капуткиной, С. Д. Прокошкина и др. Исследованию термомеханического упрочнения стали посвящены работы российских учёных — В. Д. Садовского , П. Д. Одесского, Л. И. Гладштейна , С. А. Мадатяна и др. Существенный вклад в практическое внедрение процессов термического упрочнения в потоке прокатного производства внесли учёные Института Чёрной металлургии ( Днепропетровск ): В. Т. Черненко, А. С. Кудлай, В. И. Спиваков и ЦНИИСК им. В.А. Кучеренко ( Москва ): В. А. Барышев, , Н. В. Толмачёва, С. В. Бернштейн и др. В процессе термомеханического упрочнения важным является правильное распределение степеней обжатия на каждой клети прокатного стана , скорость горячей деформации, длительность последеформационной выдержки, способ и скорость последеформационного охлаждения. За счёт термомеханического упрочнения создаётся структура динамической полигонизации аустенита , наследуемая при последующем ускоренном охлаждении низкотемпературными фазами — мартенситом , бейнитом или ферритом . Дополнительное повышение комплекса свойств (прочность, пластичность и сопротивление разрушению) происходит также за счёт более равномерного распределения упрочняющих фаз ( карбидов , и т. п.) по границам субзёрен вместо их выделения на зёренных границах или внутри зерна.
В 80-е годы XX века было внедрено производство термически упрочнённого фасонного проката ( уголки , швеллеры , ) на среднесортовом стане 450 Западно-Сибирского Металлургического Комбината ( Новокузнецк ). После прохождения последней клети прокат проходил камеру с подачей воды под давлением для ускоренного охлаждения поверхности металла. После прохождения охлаждающей камеры происходил самоотпуск поверхности проката за счёт тепла, аккумулированного в центральной части профиля. Центральная часть профиля охлаждалась с повышенной скоростью. Марки стали, проходившие термомеханическое упрочнение — Ст3сп, Ст3пс, 09Г2С, 12Г2С и т. п.
Процесс термомеханического упрочнения привёл к образованию микроструктуры «естественного композита ». Поверхностные слои имели строение отпущенного мартенсита с небольшими количествами бейнита. Микроструктура внутреннего слоя представляла обычную феррито-перлитную смесь, но более мелкозернистую. Соответственно менялась и твёрдость , определённая по методу Виккерса . Поверхностные слои имели твёрдость до 300 HV, тогда как твёрдость центрального слоя составляла около 150 HV.
При электронномикроскопическом исследовании была видна фрагментация зёрен феррита.
Существенное повышение прочности не приводило к снижению пластичности и сопротивления хрупкому разрушению. Например, для обычной углеродистой стали ВСт3сп предел прочности повышался до уровня 530 МПа (с уровня 350 МПа). При этом сопротивление хрупкому разрушению (ударная вязкость KCU при −70 °C) было очень высоким — 150 Дж/см².
Сварка профилей из термически упрочнённой в потоке прокатного производства стали не приводило к существенному снижению хладостойкости из-за изменений в зоне термического влияния. Локальное разупрочнение (мягкая прослойка) не приводило к снижению агрегатной прочности. Эти результаты дали возможность применять такой прокат в сварных строительных конструкциях северного исполнения вместо низколегированных хладостойких сталей.
Была разработана технология термического упрочнения листового проката в потоке прокатки на стане 3600 Металлургического комбината « Азовсталь » ( Мариуполь ). Марки стали, проходившие термическое упрочнение — ВСт3пс, ВСт3сп, 12Г2С, 17Г2С, 14Г2АФ и др.
В результате термомеханического упрочнения была получена макронеоднородная слоистая структура (видна при визуальном контроле травлёного сечения). Методами просвечивающей электронной микроскопии в поверхностных слоях была обнаружена развитая ячеистая субструктура (полигонизация). По субзёренным границам выделялись карбидные частицы. Плотность дислокаций в поверхностном слое составляла: ρ = 7 . В центральных по толщине слоях листа увеличивалась доля вытянутых зёрен феррита. Плотность дислокаций уменьшалась до ρ = 1,7 .
Отличительной особенностью термически упрочнённого листового проката является изменение формы диаграммы деформации .Отклонение от закона Гука (упругого поведения) начинается при ме́ньших напряжениях ( ). Порог хладноломкости для образцов на ударную вязкость с острым надрезом составлял около −70 °C. Исследование хладостойкости сварных соединений термически упрочнённого листового проката (моделирование с помощью наплавки) показало, что возможно их применение для строительства в климатических районах до −65 °C.