Interested Article - Характер группы

Хара́ктер — мультипликативная комплекснозначная функция на группе . Иначе говоря, если группа , то характер — это гомоморфизм из в мультипликативную группу поля (обычно поля комплексных чисел ).

Иногда рассматриваются только унитарные характеры — гомоморфизмы в мультипликативную группу поля, образ которых лежит на единичной окружности , или, в случае комплексных чисел, гомоморфизмы в . Все прочие гомоморфизмы в называются в таком случае квазихарактерами .

Связанные определения

Свойства

  • Для произвольной группы множество характеров образует абелеву группу с операцией
    • Эту группу называют группой характеров .
  • Характеры линейно независимы , то есть если — различные характеры группы G , то из равенства следует, что

Характеры в U(1)

Важным частным случаем характеров являются отображения в группу комплексных чисел, равных по модулю единице . Такие характеры имеют вид , где , и широко изучаются в теории чисел в связи с распределением простых чисел в бесконечных арифметических прогрессиях . В этом случае изучаемой группой является кольцо вычетов с операцией сложения, а функция линейна . При этом множество различных значений линейного коэффициента в функции определяет группу характеров, изоморфную группе .

Классическим примером использования характеров по модулю является теорема Дирихле о простых числах в арифметической прогрессии .

Для бесконечных циклических групп, изоморфных , будет существовать бесконечное множество характеров вида , где .

Характеры конечнопорождённых групп

Для произвольной конечнопорождённой абелевой группы также можно явно и конструктивно описать множество характеров в . Для этого используется теорема о разложении такой группы в прямое произведение циклических групп .

Поскольку любая циклическая группа порядка изоморфна группе и её характеры в всегда отображаются во множество , то для группы, представленной прямым произведением , циклических групп , можно параметризовать характер как произведение характеров циклических этих циклических групп:

Это позволяет провести явный изоморфизм между самой группой и группой её характеров, равной ей по количеству элементов.

Свойства характеров конечных групп

Для обозначим через характер, соответствующий элементу по описанной выше схеме.

Справедливы следующие тождества:

Вариации и обобщения

Если ассоциативная алгебра над полем , характер — это ненулевой гомоморфизм алгебры в . Если при этом — , [ уточнить ] то характер является звёздным гомоморфизмом в комплексные числа.

См. также

Примечания

  1. А. О. Гельфонд, Ю. В. Линник , Элементарные методы в аналитической теории чисел, М:Физматгиз, 1962 г., с. 61-66, 78-97
  2. К. Чандрасекхаран , Введение в аналитическую теорию чисел, М:Мир, 1974 г., с. 142-165
  3. Г. Дэвенпорт , Мультипликативная теория чисел, М:Наука, 1971 г., с. 44-64
  4. А. Карацуба , Основы аналитической теории чисел, М:Наука, 1983 г., с. 114-157
  5. К. Чандрасекхаран , Введение в аналитическую теорию чисел, М:Мир, 1974 г., с. 145-147
  6. К. Чандрасекхаран , Введение в аналитическую теорию чисел, М:Мир, 1974 г., с. 147-159

Литература

  • Кириллов А. А. Элементы теории представлений. — 2-е. — М. : Наука, 1978. — 343 с.
  • Наймарк М. А. Теория представления групп. — М. , 1978. — 560 с.
Источник —

Same as Характер группы