Interested Article - D-матрица Вигнера

-матрица Вигнера представляет собой матрицу неприводимого представления групп SU (2) и SO (3) . Комплексное сопряжение -матрицы является собственной функцией гамильтониана сферических и симметричных жёстких ротаторов. Матрица была введена в 1927 году Юджином Вигнером .

Определение D -матрицы Вигнера

Пусть , , образующие алгебры Ли и . В квантовой механике эти три оператора являются компонентами векторного оператора известного как угловой момент . Примерами могут служить момент электрона в атоме, электронный спин и момент количества движения жёсткого ротатора. Во всех случаях три оператора удовлетворяют следующим коммутационным соотношениям

где это чисто мнимое число и постоянная Планка был задана равной единице. Оператор

является оператором Казимира из (или , в зависимости от обстоятельств). Он может быть диагонализирован вместе с (Выбор этого оператора определяется соглашением), который коммутирует с . То есть, можно показать, что существует полный набор кетов с

где и . Для квантовое число является целым.

можно записать в виде

где углы Эйлера .

-матрица Вигнера представляет собой квадратную матрицу размерности с общим элементом

Матрица с общим элементом

известна как малая -матрица Вигнера.

Список элементов d -матрицы

для

для

для

для

Элементы -матрицы Вигнера с обратными нижними индексами находятся следующим соотношением:

.

См. также

Примечания

  1. Edén, M. Computer simulations in solid-state NMR. I. Spin dynamics theory (англ.) // Concepts Magn. Reson. : journal. — 2003. — Vol. 17A , no. 1 . — P. 117—154 . — doi : .
Источник —

Same as D-матрица Вигнера