Interested Article - Делимость

Дели́мость — одно из основных понятий арифметики и теории чисел , связанное с операцией деления . С точки зрения теории множеств , делимость целых чисел является отношением , определённым на множестве целых чисел .

Определение

Если для некоторого целого числа и целого числа существует такое целое число , что то говорят, что число делится нацело на или что делит

При этом число называется делителем числа , делимое будет кратным числа , а число называется частным от деления на .

Хотя свойство делимости определено на всём множестве целых чисел , обычно рассматривается лишь делимость натуральных чисел . В частности, функция количества делителей натурального числа подсчитывает лишь его положительные делители.

Обозначения

  • означает , что делится на , или что число кратно числу .
  • означает, что делит , или, что то же самое: делитель .

Связанные определения

  • У каждого натурального числа, большего единицы , имеются по крайней мере два натуральных делителя: единица и само это число. При этом натуральные числа, имеющие ровно два делителя, называются простыми , а имеющие больше двух делителей — составными . Единица имеет ровно один делитель и не является ни простым, ни составным.
  • У каждого натурального числа, большего , есть хотя бы один простой делитель .
  • Собственным делителем числа называется всякий его делитель, отличный от самого числа. У простых чисел существует ровно один собственный делитель — единица.
  • Используется также понятие тривиальных делителей : это само число и единица. Таким образом, простое число может быть определено как число, не имеющее никаких делителей, помимо тривиальных.
  • Вне зависимости от делимости целого числа на целое число , число всегда можно разделить на с остатком , то есть представить в виде:
    где .
В этом соотношении число называется неполным частным , а число остатком от деления на . Как частное, так и остаток определяются однозначно.
Число делится нацело на тогда и только тогда, когда остаток от деления на равен нулю.
  • Всякое число, делящее как , так и , называется их общим делителем ; максимальное из таких чисел называется наибольшим общим делителем . У всякой пары целых чисел есть по крайней мере два общих делителя: и . Если других общих делителей нет, то эти числа называются взаимно простыми .
  • Два целых числа и называются равноделимыми на целое число , если либо и , и делится на , либо ни , ни не делится на него.
  • Говорят, что число кратно числу , если делится на без остатка. Если число делится без остатка на числа и , то оно называется их общим кратным . Наименьшее такое натуральное называется наименьшим общим кратным чисел и .

Свойства

Замечание: во всех формулах этого раздела предполагается, что — целые числа.
  • Любое целое число является делителем нуля , и частное равно нулю:
  • Любое целое число делится на единицу:
  • На ноль делится только ноль:
,

причём частное в этом случае не определено.

  • Единица делится только на единицу:
  • Для любого целого числа найдётся такое целое число для которого
  • Если и то Отсюда же следует, что если и то
  • Для того чтобы необходимо и достаточно, чтобы
  • Если то
В системе целых чисел выполняются только первые два из этих трёх свойств; например, и но . То есть отношение делимости целых чисел является только лишь предпорядком .

Число делителей

Число положительных делителей натурального числа обычно обозначаемое является мультипликативной функцией , для неё верна асимптотическая формула Дирихле :

Здесь постоянная Эйлера — Маскерони , а для Дирихле получил значение Этот результат многократно улучшался, и в настоящее время наилучший известный результат (получен в 2003 году Хаксли). Однако наименьшее значение , при котором эта формула останется верной, неизвестно (доказано, что оно не меньше, чем ).

При этом средний делитель большого числа n в среднем растёт как , что было обнаружено А. Карацубой . По компьютерным оценкам М. Королёва .

Обобщения

Понятие делимости обобщается на произвольные кольца , например, целые гауссовы числа или кольцо многочленов .

См. также

Ссылки

Примечания

  1. , с. 7.
  2. А. А. Бухштаб. . — М. : Просвещение, 1966. 13 января 2012 года.
  3. И. М. Виноградов. Аналитическая теория чисел // Математическая энциклопедия. — М.: Советская энциклопедия . — 1977—1985.
  4. Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
  5. В. И Арнольд. Динамика, статистика и проективная геометрия полей Галуа. — М. : МЦНМО, 2005. — С. 70. — 72 с.

Литература

Источник —

Same as Делимость