Interested Article - Уравнение Кельвина

Уравнение Кельвина , также известное как уравнение капиллярной конденсации Томсона — уравнение в термодинамике , характеризующее изменение давления p насыщенного пара жидкости или растворимости c твёрдых тел. Выведено Уильямом Томсоном, лордом Кельвином, в 1871 году, но в современном виде было представлено только в 1885 году Германом фон Гельмгольцем .

Формула

В двухфазной системе из пара и жидкости в термодинамически равновесном состоянии давление пара над искривлённой границей раздела пар/жидкость выше, чем у плоской границы раздела. Искривление поверхности раздела вызвано капиллярными силами от погружённой в жидкость несмачиваемой трубки.

Уравнение Кельвина исходит из условия равенства химических потенциалов в смежных фазах, находящихся в состоянии термодинамического равновесия . В 1871 году лорд Кельвин вывел следующую формулу зависимости давления насыщенного пара (или растворимости твёрдых тел) от кривизны поверхности раздела двух сосуществующих фаз:

где — давление пара при кривизне поверхности радиуса ;
— давление пара над плоской поверхностью ( ) = ;
— поверхностное натяжение;
— плотность пара;
— плотность жидкости;
— радиусы кривизны в главном сечении неровной поверхности.

Данная форма уравнения Кельвина была представлена только в 1885 году Германом фон Гельмгольцем , преобразовавшим уравнение Кельвина в новую форму на базе . Оно имеет вид:

где — радиус средней кривизны поверхности раздела фаз (для шарообразных частиц равен их радиусу по абсолютной величине);
— межфазное поверхностное натяжение ;
— молярный объём жидкости или твёрдого тела с давлением пара или растворимостью ;
универсальная газовая постоянная .

Изменение давления

Изменение давления пара жидкости или растворимости твёрдых тел вызывается искривлением поверхности раздела смежных фаз (поверхности соприкосновения твердого тела с жидкостью или жидкости с паром). К примеру, над сферическими каплями жидкости давление насыщенного пара выше, чем его же давление над плоской поверхностью при той же температуре Отсюда растворимость твёрдого вещества с выпуклой поверхностью выше, чем растворимость с плоской поверхностью. Изменение давления в уравнении Кельвина применимо также к изменениям в * .

Понижение или повышение давление пара и растворимости зависит от знака кривизны поверхности рассматриваемого вещества в уравнении Кельвина — выпуклой при (повышение), вогнутой при (понижение). При этом давление пара в пузырьке или над поверхностью вогнутого мениска в капилляре будет пониженным. Поскольку значения и различны для частиц разных размеров или для участков поверхностей с впадинами и выступами, уравнение определяет направление переноса вещества (от больших значений и к меньшим) в процессе перехода системы к состоянию термодинамического равновесия . Отсюда крупные капли или частицы растут за счёт испарения или растворения более мелких, неровные сглаживаются за счёт растворения выступов или заполнения впадин. Отличия давления и растворимости заметны только при достаточно малой величине

Применение формулы

Формула применяется для характеристики состояния малых объектов — частиц коллоидных систем , зародышей новой фазы, дисперсных и пористых систем — а также при изучении капиллярных явлений и исследовании роста кристаллов.

При этом малые капли или кристаллики неустойчивы по сравнению с более крупными: имеет место перенос перенос вещества от мелких капель и кристаллов к более крупным ( ). Также имеет место задержка в образовании устойчивых зародышей новой фазы из метастабильного состояния, а также кристалликов из переохлаждённого расплава при его отвердевании. Зародыши данного размера не возникают, пока не будет достигнуто пересыщение, определяемое уравнением .

Примечания

  1. . Дата обращения: 25 августа 2020. 3 ноября 2020 года.
  2. Sir William Thomson (1871) Philosophical Magazine , series 4, 42 (282) : 448-452. See equation (2) on page 450.
  3. Robert von Helmholtz (1886) (Investigations of vapors and mists, especially of such things from solutions), Annalen der Physik , 263 (4): 508–543. On pages 523–525, Robert von Helmholtz converts Kelvin's equation to the form that appears here (which is actually the Ostwald–Freundlich equation).
  4. от 9 августа 2020 на Wayback Machine (рус.)

Литература

На русском

На английском

  • Sir William Thomson (1871) , Philosophical Magazine , series 4, 42 (282): 448–452.
  • W. J. Moore, Physical Chemistry, 4th ed., Prentice Hall, Englewood Cliffs, N. J., (1962) p. 734–736.
  • S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity , 2nd edition, Academic Press, New York, (1982) p. 121.
  • Arthur W. Adamson and Alice P. Gast, Physical Chemistry of Surfaces , 6th edition, Wiley-Blackwell (1997) p. 54.
  • Butt, Hans-Jürgen, Karlheinz Graf, and Michael Kappl. "The Kelvin Equation". Physics and Chemistry of Interfaces. Weinheim: Wiley-VCH, 2006. 16–19. Print.
  • Anton A. Valeev, , European Journal of Natural History , (2014), Issue 5, p. 13-14.
Источник —

Same as Уравнение Кельвина