Interested Article - Модель отказов

Модель отказов ( англ. fault model ) представляет собой инженерную модель конструкции или оборудования, которое может работать неправильно. Исходя из модели, разработчик или пользователь могут предсказать последствия конкретных отказов . Модели отказов могут быть использованы практически во всех видах инженерной деятельности.

Базовые модели отказов

Базовые модели отказов цифровых схем включают:

  • модель . Информационная линия или выходной вентиль принимают постоянное значение 0 или 1, вне зависимости от состояний входов схемы.
  • модель (также «монтажное И/ИЛИ»). Во время отказа две информационные линии соединяются друг с другом, но при безотказной работе такого происходить не должно.
  • модель . Эта модель используется для описания отказов вентилей КМОП -логики.
  • модель . В этом случае предполагается, что цепь разорвана. Соответственно одна или более входная информационная линия отключена от зависящих от них выходных линий. Также, как и у отказов короткого замыкания, поведение зависит от реализации электронной схемы.
  • модель . Сигнал принимает корректное значение, но это происходит намного медленнее и с опозданием (или, наоборот, быстрее, но такое случается редко), чем предполагается.

Модель константного отказа

Эволюционно изначально исследования рассматривали модель константного отказа, и использовались только методы для определения факта отказа . Такие подходы считаются классическими. Данная модель является одной из наиболее часто используемых на практике. Имеется два типа отказов — постоянного 0 и постоянной 1. Такие отказы обозначаются как SA0 и SA1 соответственно ( англ. stuck-at ).

У данной модели следующие допущения :

  • Отказ влияет только на входные и выходные значения вентилей схемы.
  • Только одна из линий оказывается подверженной отказу.
  • Отказ может проявляться в установке только 0 или только 1.
  • Отказ проявляется только либо на входном вентиле линии, либо только на выходном.
  • Отказ не влияет на функциональность оставшейся схемы.

Благодаря своей простоте, модель данного отказа позволяет эффективно выполнять обнаружение отказов, и по этой причине является одной из наиболее используемых в индустрии. У модели следующие преимущества :

  • Модель покрывает значительное количество дефектов производителя.
  • Разработка алгоритмов по автоматическому определению факта наличия отказов проста и эффективна. Это верно также для генерации различных паттернов для обнаружения отказов.
  • Количество тестов может быть значительно уменьшено за счёт .
  • Некоторые другие модели отказов могут быть преобразованы в множество тестов модели константных отказов.

В настоящее время известно, что использование только модели константных отказов не может быть адекватно преобразовано для модели отказов короткого замыкания .

Модель отказа короткого замыкания

В зависимости от используемой логики схемы, результатом отказа является «монтажное И» или «монтажное ИЛИ», то есть, обе информационные линии находятся в состоянии результата выполнения логической функции 'И' или 'ИЛИ'. Таким образом, при рассмотрении n выходов может присутствовать O(n 2 ) вариантов потенциальных отказов короткого замыкания. Обычно их количество ограничивается исходя из заданной физической конструкции, и рассматриваются только прилегающие друг к другу информационные линии.

Короткое замыкание между элементами схемы является одним из основных дефектов производителей электронных схем .

Различают отказы короткого замыкания с обратной связью и без ( англ. feedback и non-feedback ). Последние не имеют эффектов памяти и их большинство может быть определено с помощью модели константного отказа. Первые же могут обладать эффектом памяти и соответственно, не подчиняются комбинаторной логике .

Модель отказов задержки

Модель предполагает, что распространение сигнала происходит медленнее, чем задано из целевых соображений. Такие модели покрывают ряд свойств физических материалов, включая изменение температур, воздействия энергетического шума , перекрёстных помех , изменение нагрузки и т. д.

Характерные допущения моделей

Модель отказов строится на некоторых допущениях. Обычно рассматриваются следующие предположения, нарушения которых приводят к неработоспособности модели отказов:

  • допущение единственного отказа: может произойти только один отказ в схеме. Если мы определяем k возможных типов отказов в нашей модели для n линий, то при таком допущении общее количество отказов k×n.
  • допущение множества отказов: в этом случае множество отказов может произойти в схеме.

Сокращение списка отказов

Имеется два основных способа для уменьшения множества отказов в множество меньшего размера. Такое сокращение позволяет осуществить проверку всего исходного множества отказов с меньшим количеством тестов.

На основе эквивалентности

Пример сокращения списка отказов на основе эквивалентности

Возможна ситуация, когда два или более отказов имеют одно и то же поведение, отражающееся на выходных линиях. Такие отказы называются эквивалентными. Каждый одиночный эквивалентный отказ может быть представлен как целое множество. В таком случае для проверки наличия отказа необходимо провести намного меньше тестов, чем k×n, для обнаружения факта отказа. Удаление эквивалентных отказов таким способом называется сокращением списка отказов на основе эквивалентности.

В качестве примера на диаграмме красные отказы являются эквивалентными, и они могут быть сокращены. В такой схеме соотношение сокращения списка составляет 12 к 20.

На основе доминирования

Пример доминирущего отказа

Отказ F называется доминирующим над отказом F' в случае, если все тесты F' обнаруживают отказ F. В этом случае F может быть удален из списка проверки. Если F доминирует над F', а F' доминирует над F, то такие два отказа эквивалентны.

В примере показан вентиль NAND, и множество всех выходных значений, тестирующие SA0, {00,01,10}. Множество входных значений может быть проверено с элемента 01 для определения SA1. В таком случае выходной SA0 является доминирующим и может быть удален из списка.

Функциональное свертывание

Два отказа функционально эквивалентны в случае, если они приводят систему к одинаковым функциям. В этом случае можно сказать, что отказы функционально эквивалентны и мы не можем отличить по значениям на выходе при заданном тестовом векторе входных значений.

Реакция на отказы

Здесь рассматриваются три основные категории :

  • мониторинг: измерение всевозможных параметров и передача их оператору или автоматической системе вне зависимости от их опасности;
  • автоматическая защита: в случае опасного состояния система сама предпринимает меры по противодействию;
  • диагностика с помощью супервизора: анализ изменения состояния системы для выявления симптомов, ведущих к более опасным отказам в будущем; задачей является ранняя диагностика для того, чтобы увеличить время для противодействия или дать возможность более раннего исправления ситуации.

См. также

Примечания

  1. J.M. Acken, S.D. Millman. (англ.) // Conference: Custom Integrated Circuits Conference; Proceedings of the IEEE : Article. — Boston, MA, USA, 1992. — С. 13.4.1 — 13.4.4 . — doi : . 24 сентября 2015 года.
  2. .
  3. T. M. Storey and W. Maly. (англ.) // Int.Test Conf.. — 1990. — С. 842—851 . 24 февраля 2015 года.
  4. T. M. Storey, W. Maly, J. Andrews, and M. Miske. (англ.) // Proc. Int. Test Conf.. — 1991. — С. 311—318 . 24 февраля 2015 года.
  5. Kodandapani K.L., Pradhan D.K. (англ.) // IEEE Transactions on Computers : Article. — Department of Computer Science, Wichita State University: IEEE, 1980. — № C—29 . — С. 55—59 . — doi : . 24 сентября 2015 года.
  6. R. Rodríguez-Montañés, Joan Figueras, Eric Bruls. (англ.) // Proceedings of the IEEE International Test Conference on Discover the New World of Test and Design : Article. — 1992. — С. 892—899 .
  7. R. Isermann. (англ.) // Control Engineering Practice : Article. — Elsevier, 1997. — № 5 . — С. 639—652 . — doi : . 24 сентября 2015 года.

Литература

  • Tehranipoor, M. and Peng, K. and Chakrabarty, K. Test and Diagnosis for Small-Delay Defects. — Springer New York, 2011. — 212 p. — ISBN 9781441982971 .
  • Lala, P.K. An Introduction to Logic Circuit Testing. — Morgan \& Claypool Publishers, 2009. — 99 p. — ISBN 9781598293500 .
Источник —

Same as Модель отказов