Interested Article - Порядок элемента

Порядок элемента в теории групп — наименьшее положительное целое , такое что -кратное групповое умножение данного элемента на себя даёт нейтральный элемент :

.

Иными словами, — количество различных элементов циклической подгруппы , порождённой данным элементом. Если такого не существует (или, эквивалентно, число элементов циклической подгруппы бесконечно), то говорят, что имеет бесконечный порядок. Обозначается как или .

Изучение порядков элементов группы может дать сведения о её структуре. Несколько глубоких вопросов о связи порядка элементов и порядка группы содержатся в различных проблемах Бёрнсайда , некоторые из них остаются открытыми.

Основные свойства

Порядок элемента равен единице тогда и только тогда , когда элемент является нейтральным .

Если всякий не нейтральный элемент в совпадает со своим обратным (то есть ), то и является абелевой , поскольку . Обратное утверждение в общем случае неверно: например, (аддитивная) циклическая группа целых чисел по модулю 6 — абелева, но число 2 имеет порядок 3:

.

Для любого целого тождество выполнено тогда и только тогда, когда делит .

Все степени элемента бесконечного порядка имеют также бесконечный порядок. Если имеет конечный порядок, то порядок равен порядку , делённому на наибольший общий делитель чисел и . Порядок обратного элемента совпадает с порядком самого элемента ( ).

Связь с порядком группы

Порядок любого элемента группы делит порядок группы . Например, в симметрической группе , состоящей из шести элементов, нейтральный элемент имеет (по определению) порядок 1, три элемента, являющихся корнями из — порядок 2, а порядок 3 имеют два оставшихся элемента, являющихся корнями элементов порядка 2: то есть, все порядки элементов являются делителями порядка группы.

Частично обратное утверждение верно для конечных групп ( теоретико-групповая теорема Коши ): если простое число делит порядок группы , то существует элемент , для которого . Утверждение не выполняется для составных порядков, так, четверная группа Клейна не содержит элемента порядка четыре.

Порядок произведения

В любой группе .

Не существует общей формулы, связывающей порядок произведения с порядками сомножителей и . Возможен случай, когда и , и имеют конечные порядки, в то время как порядок произведения бесконечен, также возможно, что и , и имеют бесконечный порядок, в то время как конечен. Пример первого случая — в симметрической группе над целыми числами перестановки, задаваемые формулами , тогда . Пример второго случая — перестановки в той же группе , произведение которых является нейтральным элементом (перестановка , оставляющая элементы на своих местах). Если то можно утверждать, что делит наименьшее общее кратное чисел и . Следствием этого факта является, что в конечной абелевой группе порядок любого элемента делит максимальный порядок элементов группы.

Подсчёт по порядку элементов

Для данной конечной группы порядка , число элементов с порядком ( — делитель ) кратно , где функция Эйлера , дающая число положительных чисел, не превосходящих и взаимно простых с ним. Например, в случае , и имеется в точности два элемента порядка 3; при этом данное утверждение не даёт никакой полезной информации относительно элементов порядка 2, поскольку , и очень ограниченную информацию о составных числах, таких как , поскольку , и в группе имеется нуль элементов порядка 6.

Связь с гомоморфизмами

Гомоморфизмы групп имеют свойство понижать порядок элементов. Если является гомоморфизмом, и — элемент конечного порядка, то делит . Если инъективно , то . Этот факт может быть использован для доказательства отсутствия (инъективного) гомоморфизма между двумя какими-либо заданными группами. (Например, не существует нетривиального гомоморфизма , поскольку любое число, за исключением нуля, в имеет порядок 5, а 5 не делит ни один из порядков 1, 2 и 3 элементов .) Другим следствием является утверждение, что сопряжённые элементы имеют одинаковый порядок.

Литература

Источник —

Same as Порядок элемента