Interested Article - Отображение Шварца — Кристоффеля

Теорема Шварца — Кристоффеля — теорема в теории функций комплексного переменного , носит название немецких математиков Карла Шварца и Элвина Кристоффеля .

Формулировка

Предположим, что — некоторый -угольник , а функция осуществляет конформное отображение на . Тогда можно представить в виде

,

где — прообразы вершин на вещественной оси , — радианные меры соответствующих внутренних углов, деленные на (то есть, развернутый угол соответствует нулевой степени), а и — так называемые акцессорные параметры . Интеграл в правой части имеет собственное название — его называют интегралом Шварца — Кристоффеля I рода .

В случае, если прообраз одной из вершин многоугольника находится в бесконечности, то формула немного видоизменяется. Если -ая вершина имеет своим прообразом бесконечно удалённую точку, то формула будет иметь вид

,

то есть множитель, соответствующий этой вершине, будет просто отсутствовать. Такой интеграл будет интегралом Шварца — Кристоффеля II рода .

Трудность использования этих формул состоит в том, что точки , как и акцессорные параметры, в общем случае неизвестны. Для их вычисления обычно на многоугольник накладываются какие-то дополнительные нормировки, либо вычисление производится приближённо (что применяется на практике).

Источник —

Same as Отображение Шварца — Кристоффеля